K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2016

3
\(x^m.x^n=x^{m+n}\)
\(x^m:x^n=x^{m-n}\)
\(x^m.y^m=\left(x.y\right)^m\)
\(x^m:y^m=\left(\frac{x}{y}\right)^m\)

26 tháng 10 2016

2, Định nghĩa: Lũy thừa bậc n của một số hữu tỉ x, kí hiện \(^{x^n}\), là tích của n thừa số x (n là một số tự nhiên lớn hơn 1)

26 tháng 10 2015

\(x^m:x^n=x^{m-n}\)

\(x^m.x^n=x^{m+n}\)

\(\left(x^m\right)^n=x^{m.n}\)

 

18 tháng 7 2017

Công thức 1 : \(a^m:a^n=a^{m-n}\)với \(m\ge n\)

Công thức 2 : \(a^n\cdot b^n=\left(a\cdot b\right)^n\)

Công thức 3 : \(\frac{a^n}{b^n}=\left(\frac{a}{b}\right)^n\)

Công thức 4 : \(\left(a^m\right)^n=a^{m\cdot n}\)

18 tháng 7 2017

Ơ, công thức là định nghĩa à?

28 tháng 10 2021

chịu khó thế

a) Cách 1: \(\left(3^2\right)^3=3^{2.3}=3^6\)

\(\left(3^3\right)^2=3^{3.2}=3^6\)

\(\left(3^2\right)^5=3^{2.5}=3^{10}\)

\(9^8=\left(3^2\right)^8=3^{2.8}=3^{16}\)

\(27^6=\left(3^3\right)^6=3^{3.6}=3^{18}\)

\(81^{10}=\left(3^4\right)^{10}=3^{4.10}=3^{40}\)

Cách 2: \(\left(3^2\right)^3=9^3\)

\(\left(3^3\right)^2=3^{3.2}=\left(3^2\right)^3=9^3\)

\(\left(3^2\right)^5=9^5\)

\(9^8\)

\(27^6=\left(3^3\right)^6=3^{3.6}=3^{18}=3^{2.9}=\left(3^2\right)^9=9^9\)

\(81^{10}=\left(9^2\right)^{10}=9^{2.10}=9^{20}\)

Trả lời : 

b)

Ta có : \(5^{28}=5^{2.14}=\left(5^2\right)^{14}=25^{14}< 26^{14}\)

\(\Rightarrow5^{28}< 26^{14}\)

19 tháng 4 2017

Các công thức lần lượt là:
\(a^m.a^n=a^{m+n}\)
\(a^m:a^n=a^{m-n}\)
\(\left(a^m\right)^n=a^{m.n}\)
\(\left(m.n\right)^a=m^a.n^a\)
\(\left(\dfrac{m}{n}\right)^a=\dfrac{m^a}{n^a}\)

12 tháng 11 2017

Lần lượt :

a) am.an = am+n

b) am : an = am-n (m≥n , a≠0)

c) (an)m = am.n

d) (a.b)m = am.bm

e- (\(\dfrac{a}{b}\))m = \(\dfrac{^{a^m}}{b^m}\)

14 tháng 7 2017

khi Chia 2 lũy thừa cùng cơ số ta giữ nguyên cơ số rồi công số mũ, công thức\(x^m:x^n=x^{m-n}\left(x\ne0,m\ge n\right)\)

khi Nhân 2 lũy thừa cùng số mũ ta giữ nguyên số mũ rồi nhân hai cơ số, công thức\(n^x.m^x=\left(n.m\right)^x\)

khi Chia 2 lũy thừa cùng số mũ ta giữ nguyên số mũ rồi chia hai cơ số, công thức\(n^x:m^x=\left(n:m\right)^x,khi\left(n⋮m\right)\)

khi Lũy thừa cho 1 lũy thừa ta nhân 2 số mũ rồi giữ nguyên cơ số công thức\(\left(x^n\right)^m=x^{n.m}\)