K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2017

Sửa đề:

\(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{z+y-2}\)

Dựa vào t/c dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{z+y-2}=\dfrac{x+y+z}{x+y+x+z+z+y+\left(1+1-2\right)}=\dfrac{x+y+z}{x+x+y+y+z+z}=\dfrac{1\left(x+y+z\right)}{2\left(x+y+z\right)}=\dfrac{1}{2}\)\(x+y+z=\dfrac{1}{2}\)

\(\Rightarrow\dfrac{y}{x+z+1}=\dfrac{1}{2}\)

\(2y=x+z+1\)

\(3y=\dfrac{1}{2}+1\)

\(y=\dfrac{1}{2}\)

6 tháng 7 2017

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}=x+y+z\)

\(\Rightarrow\dfrac{y}{x+z+1}=\dfrac{1}{2}\)

\(\Rightarrow2y=x+z+1\)

\(\Rightarrow3y=x+y+z+1\)

\(\Rightarrow3y=\dfrac{1}{2}+1\)

\(\Rightarrow y=\dfrac{1}{2}\)

Vậy...

Câu 1 The function mm is defined on the real numbers by m(k) = \dfrac{k+2}{k+8}m(k)= k+8 k+2 ​ . What is the value of 10\times m(2)10×m(2)? Answer: Câu 2 The function ff is defined on the real numbers by f(x)= ax-3f(x)=ax−3. What is the value of a if f(3)=9f(3)=9? Answer: Câu 3 The function ff is defined on the real numbers by f(x)= 2x+a-3f(x)=2x+a−3. What is the value of a if f(-5)=11f(−5)=11? Answer: Câu 4 The function ff is defined on the real numbers by f(x) = 2 +...
Đọc tiếp

Câu 1 The function mm is defined on the real numbers by m(k) = \dfrac{k+2}{k+8}m(k)= k+8 k+2 ​ . What is the value of 10\times m(2)10×m(2)? Answer: Câu 2 The function ff is defined on the real numbers by f(x)= ax-3f(x)=ax−3. What is the value of a if f(3)=9f(3)=9? Answer: Câu 3 The function ff is defined on the real numbers by f(x)= 2x+a-3f(x)=2x+a−3. What is the value of a if f(-5)=11f(−5)=11? Answer: Câu 4 The function ff is defined on the real numbers by f(x) = 2 + x-x^2f(x)=2+x−x 2 . What is the value of f(-3)f(−3)? Answer: Câu 5 Given a real number aa and a function ff is defined on the real numbers by f(x)=-6\times|3x|-4f(x)=−6×∣3x∣−4. Compare: f(a)f(a) f(-a)f(−a) Câu 6 There are ordered pairs (x;y)(x;y) where xx and yy are integers such that \dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8} x 5 ​ + 4 y ​ = 8 1 ​ Câu 7 Given a negative number kk and a function ff is defined on the real numbers by f(x)=\dfrac{6}{13}xf(x)= 13 6 ​ x. Compare: f(k)f(k) f(-k)f(−k) Câu 8 Given a positive number kk and a function ff is defined on the real numbers by f(x)=\dfrac{-3}{4}x+4f(x)= 4 −3 ​ x+4. Compare: f(k)f(k) f(-k)f(−k). Câu 9 A=(1+2+3+\ldots+90) \times(12 \times34-6 \times 68):(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6})=A=(1+2+3+…+90)×(12×34−6×68):( 3 1 ​ + 4 1 ​ + 5 1 ​ + 6 1 ​ )= Câu 10 Given that \dfrac{2x+y+z+t}{x}=\dfrac{x+2y+z+t}{y}=\dfrac{x+y+2z+t}{z}=\dfrac{x+y+z+2t}{t} x 2x+y+z+t ​ = y x+2y+z+t ​ = z x+y+2z+t ​ = t x+y+z+2t ​ . The negative value of \dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z} z+t x+y ​ + t+x y+z ​ + x+y z+t ​ + y+z t+x ​ is

2
28 tháng 2 2018

nhanh đi nhé

1 tháng 11 2019

KHO QUÁ ĐI

AH
Akai Haruma
Giáo viên
21 tháng 11 2023

Lời giải:

$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$

$\Rightarrow xy+yz+xz=0$

Khi đó:

$x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=5^2-2.0=25$

1 tháng 12 2016

Chào, kb với tớ nhé

1 tháng 12 2016

uồi khó thế mình không giải đc

12 tháng 11 2017

đúng rùi đó

OK you. I will help

Giải

Chia mỗi hạng tử cho BCNN (3,5,2) = 30

\(\Rightarrow\)\(2\left(x-y\right)=5\left(y+x\right)=3\left(x+z\right)=\dfrac{2\left(x-y\right)}{30}=\dfrac{5\left(y+x\right)}{30}=\dfrac{3\left(x+z\right)}{30}=\dfrac{x-y}{15}=\dfrac{y+z}{6}=\dfrac{x+z}{10}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, Ta có:

\(\dfrac{x-y}{15}=\dfrac{x+z}{10}=\dfrac{x-y-x-z}{15-10}=\dfrac{y-z}{5}\left(1\right)\)

\(\dfrac{x+z}{10}=\dfrac{y+z}{6}=\dfrac{x+z-y-z}{10-6}=\dfrac{x-y}{4}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{y-z}{5}=\dfrac{x-y}{4}\left(đpcm\right)\)

hope you understand. Remember to brainstorm before asking questions. NHEO

AH
Akai Haruma
Giáo viên
20 tháng 10 2023

Lời giải:

Đặt $\frac{x}{2018}=\frac{y}{2019}=\frac{z}{2020}=a$

$\Rightarrow x=2018a; y=2019a; z=2020a$

$\Rightarrow (x-z)^3=(2018a-2020a)^3=(-2a)^3=-8a^3(1)$

Mặt khác:

$8(x-y)^2(y-z)=8(2018a-2019a)^2(2019a-2020a)=8a^2.(-a)=-8a^3(2)$

Từ $(1); (2)$ ta có đpcm.

4 tháng 8 2017

Ta có: \(x+y+z=18\)

\(\dfrac{x+1}{3}=\dfrac{y+2}{5}=\dfrac{z+3}{5}\)

\(\Rightarrow\dfrac{x+1}{3}=\dfrac{y+2}{5}=\dfrac{z+3}{5}and=\dfrac{\left(y+z\right)+\left(2+3\right)}{5}+\dfrac{\left(x+1\right)}{3}\)

\(\Leftrightarrow\dfrac{5+\left(y+z\right)}{5}+\dfrac{1+x}{3}\)

\(and\dfrac{5}{5}=1\)

\(\Rightarrow x=1-\dfrac{1}{3}=\dfrac{2}{3}\) vậy \(x=2\)

Ps: tự làm tiếp nha mình mới làm tới đó

4 tháng 8 2017

Buồn ngủ rồi!

1 tháng 3 2018

a) Với \(x+y+z=0\) ta tìm được \(\left(x;y;z\right)\rightarrow\left(0;0;0\right)\)

Với \(x+y+z\ne0\) áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)

Hay: \(x+y+z=\dfrac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}y+z=\dfrac{1}{2}-x\\x+z=\dfrac{1}{2}-y\\x+y=\dfrac{1}{2}-z\end{matrix}\right.\)

Thay vào đề bài ta được:

\(\dfrac{x}{\dfrac{1}{2}-x+1}=\dfrac{y}{\dfrac{1}{2}-y+1}=\dfrac{z}{\dfrac{1}{2}-z-2}=\dfrac{1}{2}\) Dễ dàng tìm được x;y;z

b) Theo đề bài ta có sẵn x+y+z khác 0

Áp dụng dãy tỉ số rồi làm tương tự câu a