given that \(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z\)
Where are non- zero. The value of y is..................
my friends, help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0$
$\Rightarrow xy+yz+xz=0$
Khi đó:
$x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=5^2-2.0=25$
OK you. I will help
Giải
Chia mỗi hạng tử cho BCNN (3,5,2) = 30
\(\Rightarrow\)\(2\left(x-y\right)=5\left(y+x\right)=3\left(x+z\right)=\dfrac{2\left(x-y\right)}{30}=\dfrac{5\left(y+x\right)}{30}=\dfrac{3\left(x+z\right)}{30}=\dfrac{x-y}{15}=\dfrac{y+z}{6}=\dfrac{x+z}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, Ta có:
\(\dfrac{x-y}{15}=\dfrac{x+z}{10}=\dfrac{x-y-x-z}{15-10}=\dfrac{y-z}{5}\left(1\right)\)
\(\dfrac{x+z}{10}=\dfrac{y+z}{6}=\dfrac{x+z-y-z}{10-6}=\dfrac{x-y}{4}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{y-z}{5}=\dfrac{x-y}{4}\left(đpcm\right)\)
hope you understand. Remember to brainstorm before asking questions. NHEO
Lời giải:
Đặt $\frac{x}{2018}=\frac{y}{2019}=\frac{z}{2020}=a$
$\Rightarrow x=2018a; y=2019a; z=2020a$
$\Rightarrow (x-z)^3=(2018a-2020a)^3=(-2a)^3=-8a^3(1)$
Mặt khác:
$8(x-y)^2(y-z)=8(2018a-2019a)^2(2019a-2020a)=8a^2.(-a)=-8a^3(2)$
Từ $(1); (2)$ ta có đpcm.
Ta có: \(x+y+z=18\)
\(\dfrac{x+1}{3}=\dfrac{y+2}{5}=\dfrac{z+3}{5}\)
\(\Rightarrow\dfrac{x+1}{3}=\dfrac{y+2}{5}=\dfrac{z+3}{5}and=\dfrac{\left(y+z\right)+\left(2+3\right)}{5}+\dfrac{\left(x+1\right)}{3}\)
\(\Leftrightarrow\dfrac{5+\left(y+z\right)}{5}+\dfrac{1+x}{3}\)
\(and\dfrac{5}{5}=1\)
\(\Rightarrow x=1-\dfrac{1}{3}=\dfrac{2}{3}\) vậy \(x=2\)
Ps: tự làm tiếp nha mình mới làm tới đó
a) Với \(x+y+z=0\) ta tìm được \(\left(x;y;z\right)\rightarrow\left(0;0;0\right)\)
Với \(x+y+z\ne0\) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)
Hay: \(x+y+z=\dfrac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}y+z=\dfrac{1}{2}-x\\x+z=\dfrac{1}{2}-y\\x+y=\dfrac{1}{2}-z\end{matrix}\right.\)
Thay vào đề bài ta được:
\(\dfrac{x}{\dfrac{1}{2}-x+1}=\dfrac{y}{\dfrac{1}{2}-y+1}=\dfrac{z}{\dfrac{1}{2}-z-2}=\dfrac{1}{2}\) Dễ dàng tìm được x;y;z
b) Theo đề bài ta có sẵn x+y+z khác 0
Áp dụng dãy tỉ số rồi làm tương tự câu a
Sửa đề:
\(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{z+y-2}\)
Dựa vào t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{z+y-2}=\dfrac{x+y+z}{x+y+x+z+z+y+\left(1+1-2\right)}=\dfrac{x+y+z}{x+x+y+y+z+z}=\dfrac{1\left(x+y+z\right)}{2\left(x+y+z\right)}=\dfrac{1}{2}\)\(x+y+z=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{y}{x+z+1}=\dfrac{1}{2}\)
\(2y=x+z+1\)
\(3y=\dfrac{1}{2}+1\)
\(y=\dfrac{1}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}=x+y+z\)
\(\Rightarrow\dfrac{y}{x+z+1}=\dfrac{1}{2}\)
\(\Rightarrow2y=x+z+1\)
\(\Rightarrow3y=x+y+z+1\)
\(\Rightarrow3y=\dfrac{1}{2}+1\)
\(\Rightarrow y=\dfrac{1}{2}\)
Vậy...