Cho hình thang ABCD (AB//BC). Gọi K,E,F là thứ tự là trung điểm của AB,BD,AC.
1) chứng minh rằng K,E,F thẳng hàng
2)Đường thẳng qua E vuông góc với AD cắt đường thẳng qua F vuông góc với BC tại I. Chứng minh rằng tam giác IDC cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì FE là ĐTB của hình thang => FE//AB//CD
E, F là trung bình của AD và BC nên AK = KC
=> IC = ID
P/s: ko chắc
Trước hết, ta chứng minh EF // AB //CD.
Gọi M là trung điểm của AD.
Ta thấy ngay theo tính chất đường trung bình trong tam giác : EN // AB, NF // DC //AB
Vậy nên N, E, F thẳng hàng hay EF // AB // CD.
Gọi M là trung điểm DC.
Xét tam giác ACD có F là trung điểm AC, M là trung điểm DC nên MF là đường trung bình.
Vậy thì MF // AD. Lại có EI vuông góc AD nên EI vuông góc MF.
Tương tự : IF vuông góc EM.
Xét tam giác EFM có \(EI\perp MF,IF\perp EM\) nên I là trực tâm giác giác.
Vậy thì \(MI\perp EF\)
Lại có EF // DC nên \(MI\perp DC\)
Xét tam giác DIC có IM là trung tuyến đồng thời đường cao nên DIC là tam giác cân tại I.
Vậy thì ID = IC.
a) Ta có:
+) M là trung điểm của AD và MN // CD
MN là đường trung bình của hình thang ABCD
N là trung điểm của BC
+) M là trung điểm của AB và ME // AB
ME là đường trung...
Gọi H là trung điểm DC.
Chứng minh HE// IF( vì cùng //BC)
=> HE vuông FK ( vì FK vuông IF)
Tương tự HF// EI( vì cùng //AD)
=> HF vuông EK( vì EK vuông IE)
Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC