ai giúp em với ạ e cần gấp ạ <3
tìm x :
\(^{x^2-x=24}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do (x2-5).(x2-10)<0
suy ra :x2-5 và x2-10 trái dấu
+)với x2-5<0suy ra x2<5
và x2-10>0 suy ra x2>10
suy ra 10<x2<5 suy ra không tồn tại x
+)Với x2-5>0 suy ra:x2>5
Và x2-10 <0 suy ra:x2<10
suy ra 5<x2<10
suy ra x2 thuộc các số:6;7;8;9
+)Với x2=6 suy ra: x không tồn tại
+)VỚi x2=7 suy ra:x không tồn tại
+Với x2=8 suy ra: x không tồn tại
+)với x2=9 suy ra x=3 hoặc x=-3
Vậy x=3 hoặc x=-3
\(\left(x^2-5\right)\left(x^2-10\right)< 0\)
Th1 : \(\hept{\begin{cases}x^2-5< 0\\x^2-10>0\end{cases}\Rightarrow\hept{\begin{cases}x^2< 5\\x^2< 10\end{cases}}}\)
Th2 : \(\hept{\begin{cases}x^2-5>0\\x^2-10< 0\end{cases}\Rightarrow\hept{\begin{cases}x^2>5\\x^2< 10\end{cases}}}\)
\(\sqrt{x}\)-3<-1
\(\sqrt{x}\)<-1+3
\(\sqrt{x}\)< 2
x< 4
phần dầu mỗi dòng bạn cho dấu tuơng đuơng giúp mk nhé
\(\dfrac{1}{\sqrt{x-3}}< -1=>\sqrt{x-3}< 0=>x\varepsilon\) rỗng
(3-12x)(x-1)+(12x-8)(x+2)+x2=52
3(x-1)-12x(x-1)+12x(x+2)-8(x+2)+x2=52
3x-3-12x2+12+12x2+24x-8x-16+x2=52
(3x+24x-8x)+(12-3-16)+(12x2-12x2+x2)=52
19x-7+x2=52
x(19-x)=52+7=59
mà 59 là số ng tố nên x rỗng
Vậy x E \(\theta\)
\(\sqrt{x}+2\sqrt{1-x}\le\sqrt{\left(1+4\right)}=\sqrt{5}\)
Mà ta có điều kiện là \(0\le x\le1\)
=> E \(\ge1\)
Vậy GTLN là \(\sqrt{5}\)đạt được khi x = \(\frac{1}{5}\)
Đạt GTNN là 1 khi x = 1
Lần sau tìm nơi gõ công thức và gõ hẳn ra nhé e <3
Áp dụng BĐT Cauchy-Schwarz ta có:
\(P=x^4+y^4\ge\frac{\left(x^2+y^2\right)^2}{2}\ge\frac{\left(\frac{\left(x+y\right)^2}{2}\right)^2}{2}=\frac{\left(\frac{2^2}{2}\right)^2}{2}=...\text{(tự tính nhé :)}\)
Khi \(x=y=1\)
\(3x-4x^2+6-8x>x^2+4x+4\)
\(\Leftrightarrow5x^2+9x-2>0\Leftrightarrow\left(5x-1\right)\left(x+2\right)>0\)
TH1 : \(\left\{{}\begin{matrix}5x-1>0\\x+2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>\dfrac{1}{5}\\x>-2\end{matrix}\right.\Leftrightarrow x>\dfrac{1}{5}\)
TH2 : \(\left\{{}\begin{matrix}5x-1< 0\\x+2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< \dfrac{1}{5}\\x< -2\end{matrix}\right.\Leftrightarrow x< -2\)
\(2x^2-x.\left(x-2\right)-3=0\)
\(2x^2-x^2+2x-3=0\)
\(x^2+2x-3=0\)
\(\left(x^2-x\right)+\left(3x-3\right)=0\)
\(x.\left(x-1\right)+3.\left(x-1\right)=0\)
\(\left(x-1\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)
2x2 - x.( x - 2 ) - 3 = 0
\(\Leftrightarrow2x^2-x^2+2x-3=0\)
\(\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow x^2-x+3x-3=0\)
\(\Leftrightarrow x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=1\end{cases}}\)
Vậy....
\(x^2-x=24\)
\(\Leftrightarrow x^2-x-24=0\)
\(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot\left(-24\right)=97>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{1-\sqrt{97}}{2}\\x_2=\dfrac{1+\sqrt{97}}{2}\end{matrix}\right.\)