4-<1/4>-<1/28>-<1/70>-...-<1/2002x2005>
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bổ sung đề:
3(2^2+1)(2^4+1)(2^8+1)(2^16+1)
Giải:
\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
Vậy ...
Đặt \(x+2=a\)
\(\Rightarrow P=\left(a-1\right)^4+\left(a+1\right)^4\)
\(P=a^4-4a^3+6a^2-4a+1+a^4+4a^3+6a^2+4a+1\)
\(P=2a^4+12a^2+2\)
Do \(\left\{{}\begin{matrix}a^4\ge0\\a^2\ge0\end{matrix}\right.\) \(\forall a\Rightarrow P\ge0+0+2=2\)
\(\Rightarrow P_{min}=2\) khi \(a=0\Rightarrow x=-2\)
Đặt \(t=x+2\), ta được:
\(P=\left(t-1\right)^4+\left(t+1\right)^4\\ =2t^4+12t^2+2\\ =2t^2\left(t^2+6\right)+2\ge2\left(\forall t\in R\right)\)
Hay \(P\ge2\left(\forall x\in R\right)\)
Đẳng thức xảy ra\(\Leftrightarrow2t^2\left(t^2+6\right)=0\Leftrightarrow2t^2=0\Leftrightarrow t=0\Leftrightarrow x=-2\)
Vậy \(minP=2\), đạt được khi \(x=-2\)
1/a + 1/b + 1/c ≥ 9/(a+b+c)
<=> (1/a + 1/b + 1/c )(a+b+c) ≥ 9
Ta có : 1/a + 1/b + 1/c ≥ 3.căn bậc 3 1/abc
a+b+c ≥ 3 căn bậc 3 abc
(1/a + 1/b + 1/c)(a+c+c) ≥ 9 căn bậc 3 abc/abc = 9
<=> 1/a + 1/b + 1/c ≥ 9(a+b+c)
Dấu ''='' xảy ra khi : a=b =c
\(4-\dfrac{1}{4}-\dfrac{1}{28}-\dfrac{1}{70}-.....-\dfrac{1}{2002.2005}\)
\(=4-\left(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+.....+\dfrac{1}{2002.2005}\right)\)
\(=4-\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+.....+\dfrac{1}{2002}-\dfrac{1}{2005}\right)\)\(=4-\left(1-\dfrac{1}{2005}\right)\)
\(=4-1+\dfrac{1}{2005}=3+\dfrac{1}{2005}=\dfrac{6016}{2005}\)