Chứng minh rằng hai chữ số tận cùng của 743 là 43
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sử dụng phép đồng dư nhá bạn.
\(7\equiv7\)(mod 100)
\(7^3\equiv43\)(mod 10)
\(7^4=1\)(mod 10)
\(\left(7^4\right)^{10}\equiv1^{10}=1\) (mod 10)
\(7^{40}.7^3\equiv1.43\equiv43\) (mod10)
Vậy .....................................
ta có: 7^34=7^4.10+3=7^4.10 .7^3=(7^4)^10 .7^3=2401^10 .343=...01.343=...43
=> dpcm
Ta sẽ chứng minh rằng với mọi \(n\inℕ\) thì \(7^{4n+3}\) luôn có 2 chữ số tận cùng là 43. (*)
Thật vậy, với \(n=0\) thì \(7^3=343\) có 2 chữ số tận cùng là 43.
Giả sử khẳng định đúng đến \(n=k\), khi đó \(7^{4k+3}=\overline{a_1a_2...a_t43}=\left(100A+43\right)\)
Với \(n=k+1\), ta có \(7^{4\left(k+1\right)+3}=7^{4k+3+4}=7^{4k+3}.7^4\)
\(=\left(100A+43\right).2401\)
\(=\left(100A+43\right)\left(2400+1\right)\)
\(=240000A+100A+103200+43\)
\(=100B+43\) có 2 chữ số tận cùng là 43.
Vậy (*) được chứng minh. Nhận thấy \(43=4.10+1\) nên \(7^{43}\) có 2 chữ số tận cùng là 43 (đpcm)
743 = 73\(.\)740 = 343 .(74)10 = 343.(2401)10 = 343\(\times\).\(\overline{...01}\) =\(\overline{...43}\)(đpcm)
A có chữ số tận cùng bằng 0 <=> A chia hết cho 10
Ta có : \(A=x^5-x=x\left(x^4-1\right)=x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)
\(=x\left(x-1\right)\left(x+1\right)\left(x^2-4\right)+5x\left(x-1\right)\left(x+1\right)\)
\(=x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)+5\left(x-1\right)x\left(x+1\right)\)
Nhận thấy , trong hạng tử đầu tiên là tích của 5 số nguyên liên tiếp
nên tồn tại một số chia hết cho 2 và một số chia hết cho 5
Mặt khác (2;5) = 1 => \(x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)⋮10\)
Tương tự với hạng tử hai , là tích của 3 số nguyên liến tiếp => tồn tại số chia hết cho 2
=> \(5\left(x-1\right)x\left(x+1\right)⋮10\)
Vậy A chia hết cho 10
Cho a là 1 số chia hết cho 5
=> 4 số nguyên liên tiếp không chia hết cho 5 là: a+1, a+2, a+3, a+4
Hiệu của tích 2 số cuối với hiệu tích 2 số đầu là: (a+3)(a+4) - (a+1)(a+2) = \(a^2+4a+3a+12-\left(a^2+2a+a+2\right)\)
=\(a^2+4a+3a+12-a^2-2a-a-2\)
=\(4a+10\)
Vì a chia hết cho 5 nên tận cùng của a là 0 hoặc 5
Nếu a tận cùng bằng 0 thì 4a tận cùng bằng 0
Nếu a tận cùng bằng 5 thi 4a tận cùng bằng 4.5 = 20 ( tận cùng cũng bằng 0)
=> 4a tận cùng bằng 0
=> 4a + 10 có tận cùng bằng 0
Vậy hiệu của tích 2 số cuối với tích 2 số đầu có tận cùng bằng 0
Tk mình nha
Ta thấy 74 = 2401, số có tận cùng là 01 nâng lên lũy thừa nào cũng có tận cùng là 01. Do đó:
743 = 740 . 73 = (74)10 . 343 = 240110 . 343 = (...01) . 343 = ...43
Vậy chữ số tận cùng của 743 là 43
Sử dụng phép đồng dư nhé :v
\(7\equiv7\) (mod 100)
\(7^3\equiv43\) (mod 10)
\(7^4\equiv1\) (mod 10)
\(\left(7^4\right)^{10}\equiv1^{10}\equiv1\) (mod 10)
\(7^{40}.7^3\equiv1.43\equiv43\) (mod 10)
Vậy chữ số tận cùng của 743 là 43.
Bài này hơi khó hiểu nhỉ :vv
uiiiiiiiiiiii các bn làm mk mèo hỉu j hết