Cho n là STN .Chứng minh rằng n( n+ 1 ) ( n + 2) \(⋮\) 6
Help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý:
Cách làm:Sử dụng tính chất:Trong n stn liên tiếp luôn có 1 và chỉ 1 stn chia hết cho n.
Chứng minh đc trong tích trên có 1 số chia hết cho 3 và ít nhất 1 số chia hết cho 2.
Vậy là xong.
Đặt \(A=n\left(n+1\right)\left(2n+1\right)\)
+) \(n=2k\Rightarrow A⋮2\)
+) \(n=2k+1\Rightarrow n+1=2k+1+1=2\left(k+1\right)⋮2\Rightarrow A⋮2\)
\(\Rightarrow A⋮2\) (2)
+) \(n=3k\Rightarrow A⋮3\)
+) \(n=3k+1\Rightarrow2n+1=2\left(3k+1\right)+1=3\left(2k+1\right)⋮3\Rightarrow A⋮3\)
+) \(n=3k+2\Rightarrow n+1=3k+2+1=3\left(k+1\right)⋮3\)
\(\Rightarrow A⋮3\) (1)
\(\text{Từ (1); (2): }\Rightarrow A⋮2.3=6\left(n\inℕ\right)\)
Trong 2 số tự nhiên liên tiếp, có 1 số chẵn và 1 số lẻ. n(n+1 ) ( n +2 ) là tích 3 số tự nhiên liên tiếp nên có ít nhất 1 số chẵn, tức chia hết cho 2.
Trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3; 1 số chia 3 dư 1 và 1 số chia 3 dư 2; do đó tích n ( n + 1 ) ( n + 2) có 1 thừa số chia hết cho 3 nên tích chia hêt cho 3.
Vậy ....
Do n; n+1; n+2 là 3 số tự nhiên liên tiếp nên trong 3 số này có 1 số chia hết cho 3 và có ít nhất 1 số chia hết cho 2
=> n.(n+1).(n+2) chia hết cho 2 và 3
=> đpcm
Ủng hộ mk nha ^_-
co:n^2+n+1
=n.n+n+1
=n.[n+1]+1
co:n.[n+1]la h cua 2 so tu nhien lien tiep
ma h cua 2 so tu nhien lien tiep luon la 1so chan
=>n.[n+1]+1 la so le
=>n.[n+1]+1 ko chia het cho 2 hay n^2+n+1 ko chia het cho 2
Ta thấy
n(n + 1)(n + 2) là ba số tự nhiên liên tiếp
Ta có nhận xét:
Tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3
Tổng của hai số tự nhiên liên tiếp luôn chia hết cho 2
=> Tích của ba số tự nhiên liên tiếp luôn chia hết cho 1.2.3 = 6
=> đpcm
Ta thấy :
n(n+1) (n+2) là 3 số tự nhiên liên tiếp chia hết cho 6
Ta nhận xét rằng:
Tổng của 3 số tự nhiên liên tiếp thì sẽ luôn chia hết cho 3.
Tích của 3 số tự nhiên liên tiếp sẽ luôn chia hết cho 2.3=6
Như vậy n(n+1) (n+2) sẽ chia hết cho 6.