K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

Dễ thôi:

\(35^{2005}-35^{2004}=35^{2004}.\left(35-1\right)=35^{2004}.34⋮7\left(đpcm\right)\)

27 tháng 6 2017

tại sao ra đc 35-1 vậy

19 tháng 9 2017

ta có \(35^{2005}-35^{2004}=35^{2004}.35-35^{2004}=35^{2004}.\left(35-1\right)=35^{2004}.34\)

do \(34⋮17\Rightarrow35^{2004}.34⋮17\left(đpcm\right)\)

19 tháng 9 2017

=352004(35-1)

= 352004.34

do 34chia hết cho 17

=>352005-352004 chia hết cho 17 (đpcm)

21 tháng 8 2017

a) ta có : \(35^{2005}-35^{2004}=35^{2004}\left(35-1\right)=35^{2004}.34=35^{2004}.2.17⋮17\)

\(\Rightarrow35^{2005}-35^{2004}\) chia hết cho \(17\) (đpcm)

b) ta có : \(27^3+9^5=\left(3^3\right)^3+\left(3^2\right)^5=3^9+3^{10}=3^9\left(1+3\right)=3^9.4⋮4\)

vậy \(27^3+9^5\) chia hết cho \(4\) (đpcm)

21 tháng 8 2017

Cho mình hỏi thêm là tại sao 35^2004 lại thành (35-1) và 3^10 lại thành (1+3) . Mình học không giỏi nên không biết . Mong bạn chỉ

18 tháng 9 2014

Ta có 352004 -352007 = 352004 - 352004+3 = 352004 - 352004.353 

= 352004(1 - 353) = - 42874. 352004

Ta thấy 42874 : 17 = 2522

nên -42874.352004 chia hết cho 17

Vậy......

8 tháng 12 2014

\(35^{2004}-35^{2007}=35^{2004}-35^{2007-3} \)
\(=35^{2004}-35^{2004}\div35^3\)
\(=35^{2004}\left(1-35^3\right)\)
\(=35^{2004}\times\left(-42874\right)\)

Ta Thay :\(-42874\) Chia het cho 17
=\(-42874\div17=2522\)

 

21 tháng 8 2018

a)   \(35^{2005}-35^{2004}=35^{2004}.\left(35-1\right)=35^{2004}.34=35^{2004}.2.17\)\(⋮\)\(17\)

c)    \(27^3+9^5=3^9+3^{10}=3^9\left(1+3\right)=3^9.4\) \(⋮\)\(4\)

hok tốt

18 tháng 8 2018

a)   \(A=2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)\)

\(=2004.\left(2005^2+2006\right)\)\(⋮\)\(2004\)

b) \(B=2005^3+125^3=\left(2005+5\right)\left(2005^2-2005.5+5^2\right)\)

\(=2010.\left(2005^2-2005.5+5^2\right)\)\(⋮\)\(2010\)

18 tháng 8 2018

a) \(A=2005^3-1=\left(2005-1\right)\left(2005^2+2005+1\right)\)

                                  \(=2004.\left(2005^2+2005+1\right)\) chia hết cho 2004

Áp dụng hằng đẳng thức: \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

b) \(2005^3+125=2005^3+5^3=\left(2005+5\right)\left(2005^2-2005.5+25\right)\)

                                                          \(=2010.\left(2005^2-2005.5+25\right)\) chia hết cho 2010

Áp dụng hằng đẳng thức: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)

17 tháng 5 2017

Ta có: 1.2.3.4...2004 = 1.2.3.4.5...401...2004 = [5.401].1.2.3.4.6....2004 = 2005.1.2.3....2004 chia hết cho 2005

=> Khi nhân với 1 + 1/2 + ... + 1/2004 cũng chia hết cho 2005

AI THẤY ĐÚNG NHỚ ỦNG HỘ

17 tháng 5 2017

Ta có: \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}\)

\(=\left(1+\frac{1}{2004}\right)+\left(\frac{1}{2}+\frac{1}{2003}\right)+\left(\frac{1}{3}+\frac{1}{2002}\right)+...+\left(\frac{1}{1002}+\frac{1}{1003}\right)\)

\(=\frac{2005}{1.2004}+\frac{2005}{2.2003}+\frac{2005}{3.2002}+...+\frac{2005}{1002.1003}\)

\(=2005\left(\frac{1}{1.2004}+\frac{1}{2.2003}+\frac{1}{3.2002}+....+\frac{1}{1002.1003}\right)\)

\(\Rightarrow A=1.2.3.....2004.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2004}\right)\)\(=1.2.3.....2004.2005\left(\frac{1}{1.2004}+\frac{1}{2.2003}+....+\frac{1}{1002.1003}\right)\)chia hết cho 2005 (đpcm)

13 tháng 3 2016

Ta có: 35=1(mod 17)

=>3535=135(mod 17)

=>3535=1 (mod 17)

Ta có: 52=1(mod 17)

=>5252 = 152(mod 17)

=>5252=1(mod 17)

=>3535+5252-2=1+1-2 (mod 17)

=>A=0 (mod 17)

=>A chia hết cho 17 (đpcm)