Cho a,b thuộc Z b>0
So sánh \(\dfrac{a}{b}\) và \(\dfrac{a+2017}{b+2017}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cậu quy đồng lên r so sánh
Còn mún làm thì phải thay số của bài này
Link:
Câu hỏi của Hoàng hùng - Toán lớp 7 - Học toán với OnlineMath
kết quả nó là :
=> \(\frac{a}{b}\)> \(\frac{a+2001}{b+2001}\)
còn cách làm thì vào trang Câu hỏi của Hoàng hùng - Toán lớp 7 - Học toán với OnlineMath
Nếu:
\(a>b\)
\(\Rightarrow\dfrac{a}{b}>1\Rightarrow\dfrac{a+2017}{b+2017}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+2017}{b+2017}\)
Nếu:
\(a< b\)
\(\Rightarrow\dfrac{a}{b}< 1\Rightarrow\dfrac{a+2017}{b+2017}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+2017}{b+2017}\)
Nếu:
\(a=b\)
\(\Rightarrow\dfrac{a}{b}=1\Rightarrow\dfrac{a+2017}{b+2017}=1\Rightarrow\dfrac{a}{b}=\dfrac{a+2017}{b+2017}=1\)
1/ Ta có \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(\Leftrightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)
\(\Rightarrow bz-cy=cx-az=ay-bx=0\Leftrightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
2/ Giả sử \(a>b\Rightarrow\frac{a}{b}>1\)
Ta sẽ chứng minh \(\frac{a}{b}>\frac{a+2017}{b+2017}\) . Thật vậy : \(\frac{a}{b}>\frac{a+2017}{b+2017}\Leftrightarrow ab+2017a>ab+2017b\Leftrightarrow a>b\) luôn đúng
Giả sử \(a< b\) thì \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+2017}{b+2017}\) . Thật vậy :
\(\frac{a}{b}< \frac{a+2017}{b+2017}\Rightarrow ab+2017a< ab+2017b\Leftrightarrow a< b\) luôn đúng
Giả sử \(a=b\Leftrightarrow\frac{a}{b}=1=\frac{2017}{2017}=\frac{a+2017}{b+2017}\)
ta có a+2017/b+2018 < a+2018/b+2018
so sánh a/b và a+2018/b+2018 ta có
1-a/b=b-a/b
1-a+2018/b+2018=b-a/b+2018 =>a/b>a+2018/b+2018>a+2017/b+2018
\(a,\dfrac{a}{b}>1\Leftrightarrow a>1\cdot b=b\\ \dfrac{a}{b}< 1\Leftrightarrow a< 1\cdot b=b\\ b,\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{ab+a}{b^2+b}\\ \dfrac{a+1}{b+1}=\dfrac{b\left(a+1\right)}{b\left(b+1\right)}=\dfrac{ab+b}{b^2+b}\\ \forall a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+1}{b+1}\\ \forall a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+1}{b+1}\\ \forall a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+1}{b+1}\)
\(c,\forall a>b\Leftrightarrow\dfrac{a}{b}-1=\dfrac{a-b}{b}>\dfrac{a-b}{b+n}\left(b< b+n;a-b>0\right)=\dfrac{a+n}{b+n}-1\\ \Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a< b\Leftrightarrow1-\dfrac{a}{b}=\dfrac{b-a}{b}>\dfrac{b-a}{b+n}\left(b< b+n;b-a>0\right)=1-\dfrac{a+n}{b+n}\\ \Leftrightarrow1-\dfrac{a}{b}>1-\dfrac{a+n}{b+n}\Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a=b\Leftrightarrow\dfrac{a+n}{b+n}=\dfrac{a}{b}\left(=1\right)\)
Bài 2:
a)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)
=> a = b = c
b)
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)
=> x = y = z (theo a)
Thay x = y = z vào biểu thức, ta có:
\(M=\dfrac{x^{333}.x^{666}}{x^{999}}=1\)
c)
\(ac=b^2\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
\(ab=c^2\Rightarrow\dfrac{b}{c}=\dfrac{c}{a}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Rightarrow a=b=c\)
Thay a = b = c vào biểu thức, ta có:
\(M=\dfrac{a^{333}}{a^{111}.a^{222}}=1\)
Ta có: Trường hợp 1:
a<b
\(a< b\Leftrightarrow\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\)
Trường hợp 2:
a>b
\(a>b\Leftrightarrow\dfrac{a}{b}>1\Rightarrow\dfrac{a+m}{b+m}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\)
Ta có:
\(\dfrac{a}{b}=\dfrac{a.\left(b+2017\right)}{b.\left(b+2017\right)}=\dfrac{a.b+a.2017}{b\left(b+2017\right)}\left(1\right)\)
\(\dfrac{a+2017}{b+2017}=\dfrac{b.\left(a+2017\right)}{b.\left(b+2017\right)}=\dfrac{a.b+b.2017}{b.\left(b+2017\right)}\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\) + Nếu a>b thì \(\dfrac{a.b+a.2017}{b.\left(b+2017\right)}>\dfrac{b.a+b.2017}{b.\left(b+2017\right)}\Leftrightarrow\dfrac{a}{b}>\dfrac{a+2017}{b+2017}\)
+ Nếu a<b thì \(\dfrac{a.b+a.2017}{b.\left(b+2017\right)}< \dfrac{b.a+b.2017}{b.\left(b+2017\right)}\Leftrightarrow\dfrac{a}{b}< \dfrac{a+2017}{b+2017}\)
+ Nếu a=b thì \(\dfrac{a.b+a.2017}{b.\left(b+2017\right)}=\dfrac{b.a+b.2017}{b.\left(b+2017\right)}\Leftrightarrow\dfrac{a}{b}=\dfrac{a+2017}{b+2017}\)