K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

Ta có: Trường hợp 1:

a<b

\(a< b\Leftrightarrow\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+m}{b+m}\)

Trường hợp 2:

a>b

\(a>b\Leftrightarrow\dfrac{a}{b}>1\Rightarrow\dfrac{a+m}{b+m}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\)

27 tháng 6 2017

Ta có:

\(\dfrac{a}{b}=\dfrac{a.\left(b+2017\right)}{b.\left(b+2017\right)}=\dfrac{a.b+a.2017}{b\left(b+2017\right)}\left(1\right)\)

\(\dfrac{a+2017}{b+2017}=\dfrac{b.\left(a+2017\right)}{b.\left(b+2017\right)}=\dfrac{a.b+b.2017}{b.\left(b+2017\right)}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\) + Nếu a>b thì \(\dfrac{a.b+a.2017}{b.\left(b+2017\right)}>\dfrac{b.a+b.2017}{b.\left(b+2017\right)}\Leftrightarrow\dfrac{a}{b}>\dfrac{a+2017}{b+2017}\)

+ Nếu a<b thì \(\dfrac{a.b+a.2017}{b.\left(b+2017\right)}< \dfrac{b.a+b.2017}{b.\left(b+2017\right)}\Leftrightarrow\dfrac{a}{b}< \dfrac{a+2017}{b+2017}\)

+ Nếu a=b thì \(\dfrac{a.b+a.2017}{b.\left(b+2017\right)}=\dfrac{b.a+b.2017}{b.\left(b+2017\right)}\Leftrightarrow\dfrac{a}{b}=\dfrac{a+2017}{b+2017}\)

19 tháng 6 2017

Cậu quy đồng lên r so sánh

Còn mún làm thì phải thay số của bài này

Link:

Câu hỏi của Hoàng hùng - Toán lớp 7 - Học toán với OnlineMath

19 tháng 6 2017

kết quả nó là :

  => \(\frac{a}{b}\)\(\frac{a+2001}{b+2001}\)

     còn cách làm thì vào trang Câu hỏi của Hoàng hùng - Toán lớp 7 - Học toán với OnlineMath

17 tháng 7 2017

Nếu:

\(a>b\)

\(\Rightarrow\dfrac{a}{b}>1\Rightarrow\dfrac{a+2017}{b+2017}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+2017}{b+2017}\)

Nếu:

\(a< b\)

\(\Rightarrow\dfrac{a}{b}< 1\Rightarrow\dfrac{a+2017}{b+2017}< 1\Rightarrow\dfrac{a}{b}< \dfrac{a+2017}{b+2017}\)

Nếu:

\(a=b\)

\(\Rightarrow\dfrac{a}{b}=1\Rightarrow\dfrac{a+2017}{b+2017}=1\Rightarrow\dfrac{a}{b}=\dfrac{a+2017}{b+2017}=1\)

20 tháng 9 2017

nguyễn trung ruồi

20 tháng 9 2017

a+2017/b+2017=a+2017-2017/b+2017-2017=a/b

=> a/b=a+2017/b+2017

21 tháng 9 2016

1/ Ta có \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(\Leftrightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}=\frac{abz-acy+bcx-abz+acy-bcx}{a^2+b^2+c^2}=0\)

\(\Rightarrow bz-cy=cx-az=ay-bx=0\Leftrightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

2/ Giả sử \(a>b\Rightarrow\frac{a}{b}>1\)

Ta sẽ chứng minh \(\frac{a}{b}>\frac{a+2017}{b+2017}\)  . Thật vậy : \(\frac{a}{b}>\frac{a+2017}{b+2017}\Leftrightarrow ab+2017a>ab+2017b\Leftrightarrow a>b\) luôn đúng

Giả sử \(a< b\) thì \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}< \frac{a+2017}{b+2017}\) . Thật vậy : 

\(\frac{a}{b}< \frac{a+2017}{b+2017}\Rightarrow ab+2017a< ab+2017b\Leftrightarrow a< b\) luôn đúng

Giả sử \(a=b\Leftrightarrow\frac{a}{b}=1=\frac{2017}{2017}=\frac{a+2017}{b+2017}\)

 

21 tháng 9 2016

Em cảm ơn chị ạ. ^_^ 

15 tháng 8 2016

ta có a+2017/b+2018 < a+2018/b+2018

so sánh a/b và a+2018/b+2018 ta có

1-a/b=b-a/b

1-a+2018/b+2018=b-a/b+2018 =>a/b>a+2018/b+2018>a+2017/b+2018

28 tháng 9 2021

\(a,\dfrac{a}{b}>1\Leftrightarrow a>1\cdot b=b\\ \dfrac{a}{b}< 1\Leftrightarrow a< 1\cdot b=b\\ b,\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{ab+a}{b^2+b}\\ \dfrac{a+1}{b+1}=\dfrac{b\left(a+1\right)}{b\left(b+1\right)}=\dfrac{ab+b}{b^2+b}\\ \forall a=b\Leftrightarrow\dfrac{a}{b}=\dfrac{a+1}{b+1}\\ \forall a>b\Leftrightarrow\dfrac{a}{b}>\dfrac{a+1}{b+1}\\ \forall a< b\Leftrightarrow\dfrac{a}{b}< \dfrac{a+1}{b+1}\)

\(c,\forall a>b\Leftrightarrow\dfrac{a}{b}-1=\dfrac{a-b}{b}>\dfrac{a-b}{b+n}\left(b< b+n;a-b>0\right)=\dfrac{a+n}{b+n}-1\\ \Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a< b\Leftrightarrow1-\dfrac{a}{b}=\dfrac{b-a}{b}>\dfrac{b-a}{b+n}\left(b< b+n;b-a>0\right)=1-\dfrac{a+n}{b+n}\\ \Leftrightarrow1-\dfrac{a}{b}>1-\dfrac{a+n}{b+n}\Leftrightarrow\dfrac{a}{b}>\dfrac{a+n}{b+n}\\ \forall a=b\Leftrightarrow\dfrac{a+n}{b+n}=\dfrac{a}{b}\left(=1\right)\)

24 tháng 6 2017

\(\frac{a}{b}>\frac{a+2017}{b+2017}\)

21 tháng 8 2017

AI

K

CHO

MINH

VOI

CAM

ON

14 tháng 7 2017

Bài 2:

a)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)

=> a = b = c

b)

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)

=> x = y = z (theo a)

Thay x = y = z vào biểu thức, ta có:

\(M=\dfrac{x^{333}.x^{666}}{x^{999}}=1\)

c)

\(ac=b^2\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)

\(ab=c^2\Rightarrow\dfrac{b}{c}=\dfrac{c}{a}\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Rightarrow a=b=c\)

Thay a = b = c vào biểu thức, ta có:

\(M=\dfrac{a^{333}}{a^{111}.a^{222}}=1\)

14 tháng 7 2017

Thanks bạn, mà bạn làm đc bài 1 không?