K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2017

\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\) (1)

\(\Leftrightarrow\left(x^2+x\right)\left(x+2\right)\left(x+3\right)=24\)

\(\Leftrightarrow\left(x^3+2x^2+x^2+2x\right)\left(x+3\right)=24\)

\(\Leftrightarrow\left(x^3+3x^2+2x\right)\left(x+3\right)=24\)

\(\Leftrightarrow x^4+3x^3+3x^3+9x^2+2x^2+6x=24\)

\(\Leftrightarrow x^4+6x^3+11x^2+6x=24\)

\(\Leftrightarrow x^4+6x^3+11x^2+6x-24=0\)

\(\Leftrightarrow x^4-x^3+7x^3-7x^2+18x^2-18x+24x-24=0\)

\(\Leftrightarrow x^3\left(x-1\right)+7x^2\left(x-1\right)+18x\left(x-1\right)+24\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+7x^2+18x+24\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+4x^2+3x^2+12x+6x+24\right)=0\)

\(\Leftrightarrow\left(x-1\right)\cdot\left[x^2\left(x+4\right)+3x\left(x+4\right)+6\left(x+4\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+4\right)\left(x^2+3x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+4=0\\x^2+3x+6=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\\x\notin R\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)

Vậy tập nghiệm phương trình (1) là \(S=\left\{-4;1\right\}\)

22 tháng 6 2017

\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)=24\)

\(\Rightarrow\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]-24=0\)

\(\Rightarrow\left(x^2+3x\right)\left(x^2+2x+x+2\right)-24=0\)

\(\Rightarrow\left(x^2+3x\right)\left(x^2+3x+2\right)-24=0\)

Đặt \(x^2+3x=t\Rightarrow x^2+3x+2=t+2\)

\(\Rightarrow t.\left(t+2\right)-24=0\)

\(\Rightarrow t^2+2t-24=0\)

\(\Rightarrow t^2-4t+6t-24=0\)

\(\Rightarrow t.\left(t-4\right)+6.\left(t-4\right)=0\)

\(\Rightarrow\left(t-4\right).\left(t+6\right)=0\)(1)

\(x^2+3x=t\) nên

\(\left(1\right)=\left(x^2+3x-4\right).\left(x^2+3x+6\right)=0\)

\(\Rightarrow\left(x^2-x+4x-4\right).\left(x^2+3x+6\right)=0\)

\(\Rightarrow\left(x-1\right).\left(x+4\right)\left(x^2+3x+6\right)=0\)

Ta có:

\(x^2+3x+6=x^2+1,5x+1,5x+2,25+3,75\)

\(=\left(x+1,5\right)^2+3,75\)

Với mọi giá trị của \(x\in R\) ta có:

\(\left(x+1,5\right)^2\ge0\Rightarrow\left(x+1,5\right)^2+3,75\ge3,75>0\)

\(\Rightarrow\left(x-1\right).\left(x+4\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\x+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\x=-4\end{matrix}\right.\)

Vậy......

Chúc bạn học tốt!!!

9 tháng 1 2018

1, 54 : x - 1 = 5

54 : x = 5+1 = 6

x = 54 : 6 = 9

2, 42 : x + 0 = 8

x = 42 : 8 = 21/4

3, 24 : x - 8 = 0

24 : x = 0 + 8 = 8

x = 24 : 8 = 3

Tk mk nha

9 tháng 1 2018

1) 54:x-x:x=3x2-1

    54:x-  1 =6-1

    54:x-   1=5

    54:x      =6

         x=54:6=9

              

24 tháng 7 2020

Bài làm:

a) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(x^2+5x+5=t\)\(\Rightarrow\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)

\(=\left(x^2+5x+5\right)^2\)

b) Tương tự như a phân tích và đặt ra được: \(t^2-1-24=t^2-25=\left(t-5\right)\left(t+5\right)\)

\(=\left(x^2+5x\right)\left(x^2+5x+10\right)=x\left(x+5\right)\left(x^2+5x+10\right)\)

c) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(x^2+8x+11=t\)\(\Rightarrow\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1\)

\(=\left(t-1\right)\left(t+1\right)=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

\(=\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)\)

d) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt \(x^2+7x+11=t\)\(\Rightarrow\left(t-1\right)\left(t+1\right)-24=t^2-1-24=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

24 tháng 7 2020

Làm mẫu cho 1 vd:

a, (x+1)(x+2)(x+3)(x+4)+1

\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)(1)

Đặt \(y=x^2+5x+5\)

Khi đó ::

(1) = \(\left(y-1\right)\left(y+1\right)+1\)

\(=y^2-1+1=y^2\)

Thay vào ta được: \(\left(x^2+5x+5\right)^2\)

29 tháng 2 2020

a) \(4\left(x+3\right)^2=\left(2x+6\right)^2\)

\(\Leftrightarrow2^2\left(x+3\right)^2=\left(2x+6\right)^2\)

\(\Leftrightarrow\left(2x+6\right)^2=\left(2x+6\right)^2\)

Vậy tập nghiệm của phương trình là \(S=ℝ\)

b) \(\left(3x+4\right)^2=4\left(x+3\right)\)

\(\Leftrightarrow9x^2+24x+16=4x+12\)

\(\Leftrightarrow9x^2+20x+4=0\)

\(\Leftrightarrow\left(9x+2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}9x+2=0\\x+2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{9}\\x=-2\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{2}{9};-2\right\}\)

c) \(\left(6x+3\right)^2=\left(x-4\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}6x+3=x-4\\6x+3=4-x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}5x+7=0\\7x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{7}{5}\\x=\frac{1}{7}\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{7}{5};\frac{1}{7}\right\}\)

d) \(\left(x^2+3x+2\right)\left(x^2+3x+3\right)-2=0\)

Đặt \(t=x^2+3x+2\), ta có :

     \(t\left(t+1\right)-2=0\)

\(\Leftrightarrow t^2+t-2=0\)

\(\Leftrightarrow\left(t+2\right)\left(t-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+2=0\\t-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+3x+4=0\\x^2+3x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{3}{2}\right)^2+\frac{7}{4}=0\left(ktm\right)\\\left(x+\frac{3}{2}\right)^2-1,25=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow x=\pm\sqrt{1,25}-\frac{3}{2}=-\frac{3\pm\sqrt{5}}{2}\)(tm)

Vậy tập nghiệm của phương trình là \(S=\left\{-\frac{3\pm\sqrt{5}}{2}\right\}\)

29 tháng 2 2020

e)Đề bài sai ! Mik sửa :

 \(\left(x^2-5x\right)^2+10\left(x^2-5x\right)+24=0\)

Đặt \(t=x^2-5x\), ta có :

       \(t^2+10t-24=0\)

\(\Leftrightarrow\left(t+12\right)\left(t-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+12=0\\t-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-5x+12=0\\x^2-5x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-\frac{5}{2}\right)^2+\frac{23}{4}=0\left(ktm\right)\\\left(x-\frac{5}{2}\right)^2-\frac{33}{4}=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow x=\pm\frac{\sqrt{33}}{2}+\frac{5}{2}\)

Vậy tập nghiệm của phương trình là \(S=\left\{\frac{\sqrt{33}}{2}+\frac{5}{2};-\frac{\sqrt{33}}{2}+\frac{5}{2}\right\}\)

f) \(\left(x^2+x+1\right)\left(x^2+x+2\right)=12\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x+2\right)-12=0\)

Đặt \(t=x^2+x+1\), ta có :

    \(t\left(t+1\right)-12=0\)

\(\Leftrightarrow t^2+t-12=0\)

\(\Leftrightarrow\left(t+4\right)\left(t-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x+5=0\\x^2+x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{19}{4}=0\left(ktm\right)\\\left(x+\frac{1}{2}\right)^2-\frac{9}{4}=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}-\frac{1}{2}=1\left(tm\right)\\x=-\frac{3}{2}-\frac{1}{2}=-2\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{1;-2\right\}\)

g) \(x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)

Đặt \(t=x^2+x\), ta có :

     \(t\left(t-2\right)-24=0\)

\(\Leftrightarrow t^2-2t-24=0\)

\(\Leftrightarrow\left(t+4\right)\left(t-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-6=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+x+4=0\\x^2+x-6=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\\left(x+\frac{1}{2}\right)^2-\frac{25}{4}=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}-\frac{1}{2}=2\left(tm\right)\\x=-\frac{5}{2}-\frac{1}{2}=-3\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{2;-3\right\}\)

h) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=0\)

\(\Leftrightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)

Đặt \(t=x^2+5x+4\), ta có :

     \(t\left(t+2\right)-24=0\)

\(\Leftrightarrow t^2+2t-24=0\)

\(\Leftrightarrow\left(t+6\right)\left(t-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+6=0\\t-4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+5x+10=0\\x^2+5x=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+\frac{5}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\x\left(x+5\right)=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-5\left(tm\right)\end{cases}}\)

Vậy tập nghiệm của phương trình là \(S=\left\{0;-5\right\}\)

2 tháng 3 2022

\(a)x=\dfrac{1}{4}+\dfrac{5}{13}=\dfrac{33}{52}.\\ b)\dfrac{x}{3}=\dfrac{2}{3}+\dfrac{-1}{7}.\\ \Leftrightarrow\dfrac{x}{3}=\dfrac{11}{21}.\\ \Leftrightarrow\dfrac{7x}{21}=\dfrac{11}{21}.\\ \Rightarrow7x=11.\\ \Leftrightarrow x=\dfrac{11}{7}.\\ c)\dfrac{x}{3}=\dfrac{16}{24}+\dfrac{24}{36}=\dfrac{2}{3}+\dfrac{2}{3}=\dfrac{4}{3}.\\ \Rightarrow x=4.\\ d)\dfrac{x}{15}=\dfrac{1}{5}+\dfrac{2}{3}=\dfrac{13}{15}.\\ \Rightarrow x=13.\)

a: =>6/x=x/24

=>x^2=144

=>x=12 hoặc x=-12

b: =>x(1-7/12+3/8)=5/24

=>x*19/24=5/24

=>x=5/24:19/24=5/19

c: =>(x-1/3)^2=1+3/4+1/2=9/4

=>x-1/3=3/2 hoặc x-1/3=-3/2

=>x=11/6 hoặc x=-7/6

d: =>(x-3)^2=16

=>x-3=4 hoặc x-3=-4

=>x=-1 hoặc x=7

e: =>9/x=-1/3

=>x=-27

f: =>x-1/2=0 hoặc -x/2-3=0

=>x=1/2 hoặc x=-6

21 tháng 7 2016

d ) 

=(x2-3x)(x2-3x+2)-24

đặt x2-3x+1=a ta đc 

(a-1)(a+1)-24

=a2-1-24=a2-25

=(a-5)(a+5)

=(x2-3x+1+5)(x2-3x+1-5)

=(x2-3x+6)(x2-3x-4)

=(x2-3x+6)(x2-4x+x-4)

=(x2-3x+1)[x(x-4)+(x-4)]

=(x-4)(x+1)(x2-3x+1)

mấy câu kia làm tương tự nhé 

1: 

\(\Leftrightarrow\left(x^2+5x+6\right)\left(x^2+5x+4\right)=24\)

\(\Leftrightarrow\left(x^2+5x\right)^2+10\left(x^2+5x\right)=0\)

\(\Leftrightarrow x^2+5x=0\)

=>x=0 hoặc x=-5

3: \(\Leftrightarrow\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)

=>(x+2)(x-1)=0

=>x=-2 hoặc x=1

7 tháng 8 2017

\(\dfrac{24}{x}:\dfrac{8}{3}=\dfrac{3}{5}\)

\(\dfrac{24}{x}=\dfrac{3}{5}.\dfrac{8}{3}\)

\(\dfrac{24}{x}=\dfrac{8}{5}\)

\(\dfrac{24}{x}=\dfrac{24}{15}\)

=>x=5

Vậy x=5

7 tháng 8 2017

\(x+3\dfrac{1}{2}+x=24\dfrac{1}{4}\)

\(\left(x+x\right)+3\dfrac{1}{2}=24\dfrac{1}{4}\)

\(x.2+\dfrac{7}{2}=\dfrac{97}{4}\)

\(x.2=\dfrac{97}{4}-\dfrac{7}{2}\)

\(x.2=\dfrac{97}{4}-\dfrac{14}{4}\)

\(x.2=\dfrac{83}{4}\)

\(x=\dfrac{83}{4}:2\)

\(x=\dfrac{83}{4}.\dfrac{1}{2}\)

\(x=\dfrac{83}{8}\)

\(x=10\dfrac{3}{8}\)

8 tháng 7 2016

Bài 2: Tìm x:

a. (x + 1) + (x + 2) + (x + 3) = 24 

(x + x + x) + (1 +2 + 3) = 24

x × 3 + 6 = 24 

x × 3 = 24 - 6 

x × 3 = 18 

x = 18 : 3

x = 6

b. x + x + 8 = 24

2 × x + 8 = 24

2 × x = 24 - 8

2 × x = 16

x = 16 : 2

x = 8