Phân tích đa thức thành nhân tử
a^3+3a^2-6a-8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a.
$7-3a=(\sqrt{7}-\sqrt{3a})(\sqrt{7}+\sqrt{3a})$
b.
$14x^2-11=(\sqrt{14}x-\sqrt{11})(\sqrt{14}x+\sqrt{11})$
c.
$3x-6\sqrt{x}-6=3(x-2\sqrt{x}-2)$
$=3[(\sqrt{x}-1)^2-3]$
$=3(\sqrt{x}-1-\sqrt{3})(\sqrt{x}-1+\sqrt{3})$
d.
$x\sqrt{x}-3\sqrt{x}-2=x\sqrt{x}-2x+2x-4\sqrt{x}+\sqrt{x}-2$
$=x(\sqrt{x}-2)+2\sqrt{x}(\sqrt{x}-2)+(\sqrt{x}-2)$
$=(\sqrt{x}-2)(x+2\sqrt{x}+1)$
$=(\sqrt{x}-2)(\sqrt{x}+1)^2$
a) x4+2x2+1=(x2+1)2
b)=3x2(a+b)+x(a+b)+5(a+b)=(a+b)(3x2+x+5)
c)=x2(a-b)-2x(a-b)-3(a-b)=(a-b)(x2-2x-3)=(a-b)(x-3)(x+1)
d)=2x(y2-a2)-5by(y+a)=(y+a)(2xy-2xa-5by)
\(\text{a) x}^4+2x^2+1=\left(x^2+1\right)^2\)
\(\text{b) 3}ax^2+3bx^2+ãx+bx+5a+5b=\left(3ax^2+3bx^2\right) +\left(ax+bx\right)+\left(5a+5b\right)=3x^2+x\left(a+b\right)+5\left(a+b\right)=\left(a+b\right)\left(3x^2+x+5\right)\)
\(\text{c) a}x^2-bx^2-2ax+2bx-3a+3b=\left(\text{a}x^2-bx^2\right)-\left(2ax-2bx\right)-\left(3a-3b\right)=x^2\left(a-b\right)-2x\left(a-b\right)-3\left(a-b\right)=\left(x^2-2x-3\right)\left(a-b\right)\)
\(a^3+a+30\)
\(=a^3+3a^2-3a^2-9a+10a+30\)
\(=\left(a+3\right)\left(a^2-3a+10\right)\)
\(x^3+x^2+100\)
\(=x^3+5x^2-4x^2-20x+20x+100\)
\(=\left(x+5\right)\left(x^2-4x+20\right)\)
\(a^3+4a^2+4a+3\)
\(=a^3+3a^2+a^2+3a+a+3\)
\(=a^2\left(a+3\right)+a\left(a+3\right)+\left(a+3\right)\)
\(=\left(a+3\right)\left(a^2+a+1\right)\)
a: \(64x^3-27y^3=\left(4x-3y\right)\left(16x^2+12xy+9y^2\right)\)
c: \(125-\left(x+1\right)^3\)
\(=\left(5-x-1\right)\left(25+5x+5+x^2+2x+1\right)\)
\(=\left(4-x\right)\left(x^2+7x+31\right)\)
a) \(64x^3-27y^3=\left(4x\right)^3-\left(3y\right)^3=\left(4x-3y\right)\left(16x^2+12xy+9y^2\right)\)
\(b)\) \(27x^3+\dfrac{y^3}{8}=\left(3x\right)^3+\left(\dfrac{y}{2}\right)^3\)
\(=\left(3x+\dfrac{y}{2}\right)\left(9x^2-\dfrac{3}{2}xy+\dfrac{1}{4}y^2\right)\)
\(c)\) \(125-\left(x+1\right)^3=5^3-\left(x+1\right)^3=\left(5-x-1\right)\left(25+5\left(x+1\right)+\left(x+1\right)^2\right)\)
\(=\left(4-x\right)\left(x^2+7x+31\right)\)
a: \(=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)
b: \(=\left(x^2y^2-8-1\right)\left(x^2y^2-8+1\right)\)
\(=\left(x^2y^2-9\right)\left(x^2y^2-7\right)\)
\(=\left(xy-3\right)\left(xy+3\right)\left(x^2y^2-7\right)\)
c: \(=x^2-8x+x-8\)
\(=x\left(x-8\right)+\left(x-8\right)\)
\(=\left(x-8\right)\left(x+1\right)\)
\(a,xy+y^2-x-y\)
\(=\left(xy+y^2\right)-\left(x+y\right)\)
\(=y\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(y-1\right)\)
\(---\)
\(b,\left(x^2y^2-8\right)^2-1\)
\(=\left(x^2y^2-8-1\right)\left(x^2y^2-8+1\right)\)
\(=\left[\left(xy\right)^2-9\right]\left(x^2y^2-7\right)\)
\(=\left(xy-3\right)\left(xy+3\right)\left(x^2y^2-7\right)\)
\(---\)
\(c,x^2-7x-8\)
\(=x^2+x-8x-8\)
\(=\left(x^2+x\right)-\left(8x+8\right)\)
\(=x\left(x+1\right)-8\left(x+1\right)\)
\(=\left(x+1\right)\left(x-8\right)\)
\(Toru\)
a) \(49-x^2-y^2+2xy=49-\left(x^2-2xy+y^2\right)=49-\left(x-y\right)^2=\left(7-x+y\right)\left(7+x-y\right)\)
b) \(\left(x-3\right)+2x\left(3-x\right)^2=\left(x-3\right)+2x\left(x-3\right)^2=\left(x-3\right)\left[1+2x\left(x-3\right)\right]=\left(x-3\right)\left(2x^2-6x+1\right)\)
`a^{3}+3a^{2}-6a-8`
`=a^{3}-8+3a(a-2)`
`=(a-2)(a^{2}+2a+4)+3a(a-2)`
`=(a-2)(a^{2}+2a+4+3a)`
`=(a-2)(a^{2}+5a+4)`
`=(a-2)(a+1)(a+4)`
\(a^3-8+3a\left(a-2\right)\)
\(=\left(a-2\right)\left(a^2+2a+4\right)+3a\left(a-2\right)\)
\(=\left(a-2\right)\left(a^2+2a+4\right)+3a\left(a-2\right)\)
\(=\left(a-2\right)\left(a^2+2a+4+3a\right)\)
\(=\left(a-2\right)\left(a^2+5a+4\right)\)
\(\left(a-2\right)\left(a+1\right)\left(a+4\right)\)