Cho \(x,y\ge0\) và \(x^2+y^2=1\). Tìm Min, Max: \(P=\sqrt{1+2a}+\sqrt{1+2b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Bunhiacopxki cho 2 bộ số (1+2x, 1+2y) và (1,1) ta có:
\(P^2\le\left[\left(\sqrt{1+2x}\right)^2+\left(\sqrt{1+2y}\right)^2\right]\left(1^2+1^2\right)=2\left(2x+2y+1\right)\le2\left(x^2+1+y^2+1+1\right)=2.4=8\)
\(\Rightarrow P\le\sqrt{8}\)
Vậy GTLN của P là \(\sqrt{8}\) khi \(x=y=\dfrac{1}{2}\)
Dấu "=" khi \(\left\{{}\begin{matrix}\sqrt{1+2x}=\sqrt{1+2y}\\x,y>0\\x^2+y^2=1\end{matrix}\right.\Leftrightarrow x=y=\dfrac{1}{2}\)
Lời giải:
Tìm max:
Áp dụng BĐT Bunhiacopxky:
\(P^2=(\sqrt{1+2x}+\sqrt{1+2y})^2\leq (1+2x+1+2y)(1+1)=4(x+y+1)\)
Áp dụng BĐT AM-GM:
\((x+y)^2\leq 2(x^2+y^2)=2\Rightarrow x+y\leq \sqrt{2}\)
\(\Rightarrow P^2\leq 4(x+y+1)\leq 4(\sqrt{2}+1)\)
\(\Rightarrow P\leq 2\sqrt{\sqrt{2}+1}\)
Vậy \(P_{\max}=2\sqrt{\sqrt{2}+1}\Leftrightarrow x=y=\sqrt{\frac{1}{2}}\)
Tìm min:
Vì \(x^2+y^2=1\Rightarrow x^2\leq 1; y^2\leq 1\Rightarrow x,y\leq 1\). Kết hợp với \(x,y\geq 0\)
\(\Rightarrow 0\leq x,y\leq 1\Rightarrow x^2\leq x; y^2\leq y\Rightarrow x^2+y^2\leq x+y\)
Do đó:
\(P^2=2+2(x+y)+2\sqrt{(1+2x)(1+2y)}\)
\(=2+2(x+y)+2\sqrt{1+2(x+y)+4xy}\geq 2+2(x^2+y^2)+2\sqrt{1+2(x^2+y^2)}=4+2\sqrt{3}\)
\(\Rightarrow P\geq \sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
Vậy \(P_{\min}=\sqrt{3}+1\Leftrightarrow (x,y)=(1,0)\) và hoán vị.
1) hệ <=> \(\left\{{}\begin{matrix}x+y+3\sqrt[3]{xy}\left(\sqrt[3]{x}+\sqrt[3]{y}\right)=1\\x+y+3\sqrt[3]{\left(x-1\right)\left(y+1\right)}\left(\sqrt[3]{x-1}+\sqrt[3]{y+1}\right)=1\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x+y+3\sqrt[3]{xy}=1\\x+y+3\sqrt[3]{\left(x-1\right)\left(y+1\right)}=1\end{matrix}\right.\)
trừ vế theo vế => \(3\sqrt[3]{xy}-3\sqrt[3]{\left(x-1\right)\left(y+1\right)}=0\)
<=> xy=(x-1)(y-1) <=> x-y=1=> \(\left\{{}\begin{matrix}\sqrt[3]{x}+\sqrt[3]{y}=1\\x-y=1\end{matrix}\right.\)
đặt \(\sqrt[3]{x}=a;\sqrt[3]{y}=b\)
hpt <=> \(\left\{{}\begin{matrix}a+b=1\\a^3-b^3=1\end{matrix}\right.\)<=>\(\left\{{}\begin{matrix}b=1-a\\2a^3-3a^2+3a-2=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}b=1-a\\\left(a-1\right)\left(2a^2-a+2\right)=0\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}a=1\\b=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
p/s: cách làm khá dài ,có ai có cách khác thì làm luôn cho mik exp :v )
1) \(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)\(\Leftrightarrow\)\(x+y\ge8\)
\(\frac{1}{2}=\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}\)\(\Leftrightarrow\)\(xy=2\left(x+y\right)\ge16\)
\(A=\sqrt{x}+\sqrt{y}\ge2\sqrt[4]{xy}\ge2\sqrt[4]{16}=4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=4\)
2) \(B=\sqrt{3x-5}+\sqrt{7-3x}\ge\sqrt{3x-5+7-3x}=\sqrt{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{7}{3}\end{cases}}\)
\(B=\sqrt{3x-5}+\sqrt{7-3x}\le\frac{3x-5+1+7-3x+1}{2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=2\)
Cho \(x^2+y^2=1\).Tìm min max \(\sqrt{3}xy+y^2\)
Cho \(a^2+b^2\le2\left(a+b\right)\) Tìm min max 2a+b
Lời giải:
Đặt $xy=t$
Áp dụng BĐT AM_GM:
$xy\leq \frac{(x+y)^2}{4}=3$. Như vậy $0\leq t\leq 3$
Ta có:
$P=(x^4+1)(y^4+1)=x^4y^4+x^4+y^4+1$
$=x^4y^4+(x^2+y^2)^2-2x^2y^2+1$
$=x^4y^4+[(x+y)^2-2xy]^2-2x^2y^2+1$
$=x^4y^4+2x^2y^2-48xy+145$
$=t^4+2t^2-48t+145$
$=t(t^3+2t-48)+145$
Vì $0\leq t\leq 3$ nên $t(t^3+2t-48)\leq 0$
$\Rightarrow P\leq 145$
Vậy $P_{\max}=145$. Giá trị này đạt tại $(x,y)=(0,2\sqrt{3})$ và hoán vị.