K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2019

Áp dụng bất đẳng thức Bunhiacopxki cho 2 bộ số (1+2x, 1+2y) và (1,1) ta có:

\(P^2\le\left[\left(\sqrt{1+2x}\right)^2+\left(\sqrt{1+2y}\right)^2\right]\left(1^2+1^2\right)=2\left(2x+2y+1\right)\le2\left(x^2+1+y^2+1+1\right)=2.4=8\)

\(\Rightarrow P\le\sqrt{8}\)

Vậy GTLN của P là \(\sqrt{8}\) khi \(x=y=\dfrac{1}{2}\)

Dấu "=" khi \(\left\{{}\begin{matrix}\sqrt{1+2x}=\sqrt{1+2y}\\x,y>0\\x^2+y^2=1\end{matrix}\right.\Leftrightarrow x=y=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
31 tháng 12 2018

Lời giải:

Tìm max:

Áp dụng BĐT Bunhiacopxky:

\(P^2=(\sqrt{1+2x}+\sqrt{1+2y})^2\leq (1+2x+1+2y)(1+1)=4(x+y+1)\)

Áp dụng BĐT AM-GM:

\((x+y)^2\leq 2(x^2+y^2)=2\Rightarrow x+y\leq \sqrt{2}\)

\(\Rightarrow P^2\leq 4(x+y+1)\leq 4(\sqrt{2}+1)\)

\(\Rightarrow P\leq 2\sqrt{\sqrt{2}+1}\)

Vậy \(P_{\max}=2\sqrt{\sqrt{2}+1}\Leftrightarrow x=y=\sqrt{\frac{1}{2}}\)

Tìm min:

\(x^2+y^2=1\Rightarrow x^2\leq 1; y^2\leq 1\Rightarrow x,y\leq 1\). Kết hợp với \(x,y\geq 0\)

\(\Rightarrow 0\leq x,y\leq 1\Rightarrow x^2\leq x; y^2\leq y\Rightarrow x^2+y^2\leq x+y\)

Do đó:

\(P^2=2+2(x+y)+2\sqrt{(1+2x)(1+2y)}\)

\(=2+2(x+y)+2\sqrt{1+2(x+y)+4xy}\geq 2+2(x^2+y^2)+2\sqrt{1+2(x^2+y^2)}=4+2\sqrt{3}\)

\(\Rightarrow P\geq \sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)

Vậy \(P_{\min}=\sqrt{3}+1\Leftrightarrow (x,y)=(1,0)\) và hoán vị.

23 tháng 12 2015

đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn

28 tháng 4 2019

uy bạn giỏi thế lớp 7 học toán 8 rồi af gh3 z