K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

a,\(a^2\ge0;b^2\ge0=>a^2+b^2\ge0\)

b, \(\dfrac{a^2+b^2}{2}\ge a< =>a^2+b^2\ge2a?\) ( đề sai )

c, \(m^2+n^2+2\ge2\left(m+n\right)\)

\(\Leftrightarrow m^2+n^2+2-2m-2n\ge0\)

\(\Leftrightarrow\left(m^2-2m+1\right)+\left(n^2-2n+1\right)\ge0\)

\(\Leftrightarrow\left(m-1\right)^2+\left(n-1\right)^2\ge0\) ( hiển nhiên đúng )

\(=>đpcm\)

d, Câu này cho thêm đk a,b > 0

Áp dụng bất đẳng thức Cô - si cho 2 số dương a , b

\(\left(a+b\right)\ge2\sqrt{ab}\left(1\right)\)

Áp dụng bất đẳng thức Cô - si cho 2 số dương 1/a , 1/b có :

\(\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{\dfrac{1}{ab}}\left(2\right)\)

Nhân theo vế của (1) ,(2) có : \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\dfrac{1}{ab}}=4\)

\(=>đpcm\) .

10 tháng 6 2017

caí này thì mấy bước đây

13 tháng 8 2018

link nè

Bài này mk giải rồi : https://hoc24.vn/hoi-dap/question/642881.html

10 tháng 10 2021

bài 1 :

tập hợp A có 1 phần tử

tập hợp B có 7 phần tử 

bài 2 : 

a) 3 ∈ A       c) 3 ∉ B       d)  {4,m,3,n} ∈ A 

10 tháng 10 2021

giải tiếp cho mik đc hok

7 tháng 3 2018

chỉ cần bài 1,2,3 nữa thui ak

7 tháng 10 2021

\(1,\)

\(a,\) Với \(n=1\Leftrightarrow5+2\cdot1+1=8⋮8\left(đúng\right)\)

Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow5^k+2\cdot3^{k-1}+1⋮8\)

Với \(n=k+1\)

\(5^n+2\cdot3^{n-1}+1=5^{k+1}+2\cdot3^k+1\\ =5^k\cdot5+2\cdot3^k+1\\ =5^k\cdot2+2\cdot3^k+5^k\cdot3+1\\ =2\left(5^k+3^k\right)+5^k+2\cdot5^{k-1}+1+2\cdot3^{k-1}-2\cdot3^{k-1}\\ =2\left(5^k+3^k\right)+\left(5^k+2\cdot3^{k-1}+1\right)-2\left(3^{k-1}+5^{k-1}\right)\)

Vì \(5^k+3^k⋮\left(5+3\right)=8;5^{k-1}+3^{k-1}⋮\left(5+3\right)=8;5^k+2\cdot3^{k-1}+1⋮8\) nên \(5^{k+1}+2\cdot3^k+1⋮8\)

Theo pp quy nạp ta được đpcm

\(b,\) Với \(n=1\Leftrightarrow3^3+4^3=91⋮13\left(đúng\right)\)

Giả sử \(n=k\left(k\ge1\right)\Leftrightarrow3^{k+2}+4^{2k+1}⋮13\)

Với \(n=k+1\)

\(3^{n+2}+4^{2n+1}=3^{k+3}+4^{2k+3}\\ =3^{k+2}\cdot3+16\cdot4^{2k+1}\\ =3^{k+2}\cdot3+3\cdot4^{2k+1}+13\cdot4^{2k+1}\\ =3\left(3^{k+2}+4^{2k+1}\right)+13\cdot4^{2k+1}\)

Vì \(3^{k+2}+4^{2k+1}⋮13;13\cdot4^{2k+1}⋮13\) nên \(3^{k+3}+4^{2k+3}⋮13\)

Theo pp quy nạp ta được đpcm

7 tháng 10 2021

\(1,\)

\(c,C=6^{2n}+3^{n+2}+3^n\\ C=36^n+3^n\cdot9+3^n\\ C=\left(36^n-3^n\right)+\left(3^n\cdot9+2\cdot3^n\right)\\ C=\left(36^n-3^n\right)+3^n\cdot11\)

Vì \(36^n-3^n⋮\left(36-3\right)=33⋮11;3^n\cdot11⋮11\) nên \(C⋮11\)

\(d,D=1^n+2^n+5^n+8^n\)

Vì \(1^n+2^n+5^n⋮\left(1+2+5\right)=8;8^n⋮8\) nên \(D⋮8\)

29 tháng 11 2019

Bài 1:

Hỏi đáp Toán

Chúc bạn học tốt!

29 tháng 11 2019

Các bạn giúp mình nhé : Bạn Vũ Minh Tuấn , Nguyễn Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 và thầy Akai Haruma , Phynit và tất cả các bạn khác vào giúp mình với ạ !!!

18 tháng 4 2017

a)  \(a^2+b^2-2ab=\left(a-b\right)^2\ge0\)

b) \(\frac{a^2+b^2}{2}=\frac{a^2}{2}+\frac{b^2}{2}\ge2\sqrt{\frac{a^2}{2}.\frac{b^2}{2}}=2ab\)

c)\(a\left(a+2\right)=a^2+2a< a^2+2a+1=\left(a+1\right)^2\)

TOÀN BÀI BẤT ĐẲNG THỨC CƠ BẢN. TỰ LÀM NỐT NHÉ. NHỚ BẤM ĐÚNG CHO MÌNH