1/4 × 2/6 × 3/8 × 4/10 × 5/12.......30/62 × 61/64 = 2x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + 9 - 10 - 11 + 12 + ... + 61 - 62 - 63 + 64 ( 64 số )
= ( 1 - 2 - 3 + 4 ) + ( 5 - 6 - 7 + 8 ) + ( 9 - 10 - 11 + 12 ) + ... + ( 61 - 62 - 63 + 64 ) ( 16 nhóm )
= 0 + 0 + 0 + ... + 0 ( 16 số 0 )
= 0 . 16
= 0
Ta có: \(2^x=\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot\dfrac{5}{12}\cdot...\cdot\dfrac{30}{62}\cdot\dfrac{31}{64}\)
\(\Leftrightarrow2^x=\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot31}{2\cdot\left(2\cdot3\cdot4\cdot...\cdot31\right)\cdot64}\)
\(\Leftrightarrow2^x=\dfrac{1}{2}\cdot\dfrac{1}{64}=\dfrac{1}{128}\)
\(\Leftrightarrow2^x=\dfrac{1}{2^6}\)
\(\Leftrightarrow2^{x+6}=1\)
\(\Leftrightarrow x+6=0\)
hay x=-6
Vậy: x=-6
`1/4 . 2/6 . 3/8 ... . 30/62 .31/64 =2^x`
`-> (1.2.3....30.31)/(4.6.8....62.64)=2^x`
`-> (1.(2.3...31))/(2.(2.3.4...31).32)=2^x`
`-> 1/(2.32)=2^x`
`-> 1/64=2^x`
`-> 1/(2^6)=2^x`
`-> x=-6`.
a) Ta có: \(\left(x-1\right)^{x+2}-\left(x-1\right)^{x+4}=0\)
\(\Leftrightarrow\left(x-1\right)^x\cdot\left(x-1\right)^2-\left(x-1\right)^x\cdot\left(x-1\right)^4=0\)
\(\Leftrightarrow\left(x-1\right)^{x+2}\cdot\left[1-\left(x-1\right)^2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-1=1\\x-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
b) Ta có: \(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot\dfrac{5}{15}\cdot...\cdot\dfrac{30}{62}\cdot\dfrac{31}{64}=2x\)
\(\Leftrightarrow2x=\dfrac{1}{64}\)
hay \(x=\dfrac{1}{128}\)
Có: \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}...\frac{30}{62}.\frac{31}{64}=\frac{1}{2.2}.\frac{2}{2.3}.\frac{3}{2.4}...\frac{30}{2.31}.\frac{31}{2.32}=\frac{1}{2}.\frac{1}{2}.\frac{1}{2}...\frac{1}{2}.\frac{1}{2}.\frac{1}{32}\)
\(=\frac{1}{2^{31}.2^5}=\frac{1}{2^{36}}=2^x\)\(\Rightarrow1=2^x.2^{36}=2^{36+x}\)\(\Rightarrow2^{36+x}=2^0\Rightarrow36+x=0\Rightarrow x=-36\)
=>\(1\cdot\dfrac{2}{4}\cdot\dfrac{3}{6}\cdot...\cdot\dfrac{31}{62}\cdot\dfrac{1}{64}=2^x\)
=>\(2^x=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot...\cdot\dfrac{1}{2}\cdot\dfrac{1}{64}=\left(\dfrac{1}{2}\right)^{30}\cdot\left(\dfrac{1}{2}\right)^6=\dfrac{1}{2^{36}}\)
=>x=-36
\(\dfrac{1}{2.2}.\dfrac{2}{2.3}.....\dfrac{31}{64}=2^x\\ =>\dfrac{1}{2.2.2.....2.64}=2^x\\ \dfrac{1}{2^{30}.26}=2^x\\ =>\dfrac{1}{2^{36}}=2^x\\ =>2^{-36}=2^x\\ =>x=-36\)
\(\Rightarrow\dfrac{1}{2.2}.\dfrac{2}{2.3}.\dfrac{3}{2.4}.\dfrac{4}{2.5}.\dfrac{5}{2.6}...\dfrac{30}{2.31}.\dfrac{31}{2.32}\) = 2x
\(\Rightarrow\dfrac{1}{2}\left(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.\dfrac{5}{6}...\dfrac{30}{31}.\dfrac{31}{32}\right)\) = 2x
\(\Rightarrow\dfrac{1}{2}\left(\dfrac{1.2.3.4.5...30.31}{2.3.4.5...31.32}\right)\) = 2x
\(\Rightarrow\dfrac{1}{2}.\dfrac{1}{32}=2x\)
\(\Rightarrow2x=\dfrac{1}{64}\)
\(\Rightarrow x=\dfrac{\dfrac{1}{64}}{2}=\dfrac{1}{64}.\dfrac{1}{2}=\dfrac{1}{128}\)
\(\dfrac{1}{4}.\dfrac{2}{6}.\dfrac{3}{8}.\dfrac{4}{10}.\dfrac{5}{12}.....\dfrac{30}{62}.\dfrac{31}{64}=2x\)
\(\dfrac{1.2.3.4.5.....30.31}{\left(2.2\right)\left(2.3\right)\left(2.4\right)\left(2.5\right)\left(2.6\right).....\left(2.31\right)\left(2.32\right)}=2x\)
\(\dfrac{1\left(2.3.4.5....30.31\right)}{32\left(2.3.4.5.....31\right).2^{31}}=2x\)
\(\dfrac{1}{2^5.2^{31}}=2x\Rightarrow2x=\dfrac{1}{2^{36}}\Rightarrow x=\dfrac{1}{2^{36}}\div2=\dfrac{1}{2^{37}}\)
Vậy x = \(\dfrac{1}{2^{37}}\)
\(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot...\cdot\dfrac{30}{62}\cdot\dfrac{31}{64}=2x\\ \dfrac{1}{2\cdot2}\cdot\dfrac{2}{2\cdot3}\cdot\dfrac{3}{2\cdot4}\cdot\dfrac{4}{2\cdot5}\cdot...\cdot\dfrac{30}{2\cdot31}\cdot\dfrac{31}{2\cdot32}=2x\\ \dfrac{1}{2}\cdot\left(\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot...\cdot\dfrac{30}{31}\cdot\dfrac{31}{32}\right)=2x\\ \dfrac{1}{2}\cdot\left(\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot30\cdot31}{2\cdot3\cdot4\cdot5\cdot...\cdot31\cdot32}\right)=2x\\ \dfrac{1}{2}\cdot\dfrac{1}{32}=2x\\ 2x=\dfrac{1}{64}\\ x=\dfrac{1}{64}:2\\ x=\dfrac{1}{128}\)