Xác định giá trị của biểu thức dể các biểu thức sau có nghĩa
x-y/2x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Để biểu thức có nghĩa thì \(x-2\ne0\Rightarrow x\ne2\)
b
Để biểu thức có nghĩa thì \(2x+1\ne0\Rightarrow x\ne-\dfrac{1}{2}\)
c
Ủa câu c là (x-1)/(x^2+1) đúng không bạn:v
Để biểu thức có nghĩa thì \(x^2+1\ne0\)
Vì \(x^2\ge0\forall x\Rightarrow x^2+1>0\forall x\)
Vậy biểu thức có nghĩa với mọi giá trị x.
d
Để biểu thức có nghĩa thì \(xy-3y\ne0\Leftrightarrow y\left(x-3\right)\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\ne0\\x-3\ne0\Rightarrow x\ne3\end{matrix}\right.\)
Vậy để biểu thức có nghĩa thì đồng thời \(y\ne0,x\ne3\)
a) \(\dfrac{5}{x-2}\)
Có nghĩa khi:
\(x-2\ne0\)
\(\Rightarrow x\ne2\)
b) \(\dfrac{x-y}{2x+1}\)
Có nghĩa khi:
\(2x+1\ne0\)
\(\Rightarrow2x\ne-1\)
\(\Rightarrow x\ne-\dfrac{1}{2}\)
c) \(\dfrac{x-1}{x^2+1}\)
Có nghĩa khi:
\(x^2+1\ne0\)
\(\Rightarrow x^2\ne-1\) (luôn đúng)
Vậy biểu thức được xác định với mọi x
d) \(\dfrac{ax+by+c}{xy-3y}=\dfrac{ax+by+c}{y\left(x-3\right)}\)
Có nghĩa khi:
\(y\left(x-3\right)\ne0\)
\(\Leftrightarrow\left[{}\begin{matrix}y\ne0\\x-3\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}y\ne0\\x\ne3\end{matrix}\right.\)
xác định khi 4ax + 6x + 9y + 6ay ≠ 0
⇒ 2x(2a + 3) + 3y(2a + 3) = (2a + 3)(2x + 3y) ≠ 0
Ta có: 2a + 3 ≠ 0 ⇒ a ≠ - 3/2 ; 2x + 3y ≠ 0 ⇒ x ≠ - 3/2 y
Điều kiện: x ≠ - 3/2 y và a ≠ - 3/2
Vậy biểu thức không phụ thuộc vào x, y.
a) x ≠ 0 , x ≠ − 2
b) Ta có D = x 2 - 2x - 2.
c) Chú ý D = - x 2 - 2x - 2 = - ( x + 1 ) 2 - 1 ≤ -1. Từ đó tìm được giá trị lớn nhất của D = -1 khi x = -1.
`a, x = 0 <=> (0^2-1)/(2.0+1) = -1/1 = -1`
`b,` Biểu thức không xác định vì mẫu `= 0`
xác định khi:
(x + y)(6x – 6y) ≠ 0 ⇒
Điều kiện x ≠ ± y
Vậy biểu thức không phụ thuộc vào x, y.
1) a) Căn thức có nghĩa \(\Leftrightarrow4-2x\ge0\Leftrightarrow2x\le4\Leftrightarrow x\le2\)
b) Thay x = 2 vào biểu thức A, ta được: \(A=\sqrt{4-2.2}=\sqrt{0}=0\)
Thay x = 0 vào biểu thức A, ta được: \(A=\sqrt{4-2.0}=\sqrt{4}=2\)
Thay x = 1 vào biểu thức A, ta được: \(A=\sqrt{4-2.1}=\sqrt{2}\)
Thay x = -6 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-6\right)}=\sqrt{16}=4\)
Thay x = -10 vào biểu thức A, ta được: \(A=\sqrt{4-2.\left(-10\right)}=\sqrt{24}=2\sqrt{6}\)
c) \(A=0\Leftrightarrow\sqrt{4-2x}=0\Leftrightarrow4-2x=0\Leftrightarrow x=2\)
\(A=5\Leftrightarrow\sqrt{4-2x}=5\Leftrightarrow4-2x=25\Leftrightarrow x=\frac{-21}{2}\)
\(A=10\Leftrightarrow\sqrt{4-2x}=10\Leftrightarrow4-2x=100\Leftrightarrow x=-48\)
1) \(\frac{x+1}{x^2-2}\)
\(ĐKXĐ:x^2-2\ne0\Leftrightarrow x\ne\pm\sqrt{2}\)
2) \(\frac{x-1}{x^2+1}\)
Ta có: \(x^2\ge0\Rightarrow x^2+1\ge1\)
Vậy phân thức đại số này có ý nghĩa với mọi x.
3) \(\frac{ax+by+c}{xy-3y}\)
\(ĐKXĐ:xy-3y\ne0\)
\(\Rightarrow y\left(x-3\right)\ne0\)
\(\Rightarrow\hept{\begin{cases}y\ne0\\x-3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ne0\\x\ne3\end{cases}}\)
Vậy \(y\ne0;x\ne3\) thì biểu thức trên xác định.
4) \(\frac{x-y}{2x+1}\)
\(ĐKXĐ:2x+1\ne0\Leftrightarrow x\ne\frac{-1}{2}\)
Để biểu thức \(\dfrac{x-y}{2x+1}\) là phân số thì
\(2x+1\ne0\Rightarrow2x\ne-1\Rightarrow x\ne\dfrac{-1}{2}\)
Chúc bạn học tốt!!