Tổng của 2 số tự nhiên là 270.Nếu gạch bỏ chữ số 6 ở hàng đơn vị của số thứ nhất thì được số thứ hai.Tìm hai số đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gạch bỏ chữ số 6 ở hàng đvị số này thhif đc số kia
=> số lớn gấp 10 lần số bé và 6 đơn vị
nếu hàng đơn vị của số lớn là số 0 thì tổng 2 số là
270 - 6 = 264
coi số lớn là 10 phần thì số bé là 1 phần như thế
số lớn là
264 : ( 10 + 1 ) x 10 + 6 = 246
số bé là
24
vạy số bé là 24
số lớn là 246
đ/s
Gọ số thứ nhất là ABC vì tổng là số có 3 chữ số mà số thứ nhất hơn số thứ 2 một chữ số và gọi số thứ 2 là AB
ABC + AB = 133
10 x AB + C + AB = 133
11 x AB + C = 133
11 x AB = 133 - C
Từ 133 - C ta thay : 133 - C chia hết cho 11 mà 133 : 11 bằng 12 (dư 1) nên C = 1 thay C = 1vào 133 - C ta có: 11 x AB = 132
AB = 132 : 11
AB = 12 nên ABC = 121
Vậy số cần tìm là 12 và 121
mk làm r đúng 100% luôn đó
Gọi số thứ nhất là \(\overline{abc,}\)số thứ hai là \(\overline{ab}\) Ta có:
\(10\overline{ab}+c+\overline{ab}=133\)
\(=>11\overline{ab}+c=133\)
\(=>\overline{ab}\in\left[10;11;12\right]\)
\(=>11\overline{ab}\in\left[110;121;132\right]\)
Dễ thấy nếu \(11\overline{ab}\in\left[110;121\right]\) thì c > 9 (mà c là số có 1 chữ số)
\(=>11\overline{ab}=132=>\overline{ab}=12\)
\(=>\overline{abc}=133-12=121\)
Vậy 2 số cần tìm là 12 và 121.
Các số đó là : 1804 , 180 , 18 , 1
Mình thử rồi , kết quả đúng , k mình nha mình k lai
Gọi 4 số tự nhiên cần tìm lần lượt là a, b, c, d. Theo đề bài, ta có các điều kiện sau: 1. a + b + c + d = 2003 2. Nếu xóa bỏ chữ số hàng đơn vị của số thứ nhất ta được số thứ hai: a // 10 = b 3. Nếu xóa bỏ chữ số hàng đơn vị của số thứ hai ta được số thứ ba: b // 10 = c 4. Nếu xóa bỏ chữ số hàng đơn vị của số thứ ba ta được số thứ tư: c // 10 = d Ta sẽ giải hệ phương trình này bằng cách thử từng giá trị của a và d. Với a = 1, d = 2, ta có: 1 + b + c + 2 = 2003 => b + c = 2000 Vì b và c là số tự nhiên, nên ta thử các giá trị của b và c từ 1 đến 1999. Tuy nhiên, không có cặp giá trị nào thỏa mãn điều kiện b + c = 2000. Với a = 2, d = 3, ta có: 2 + b + c + 3 = 2003 => b + c = 1998 Tương tự, ta thử các giá trị của b và c từ 1 đến 1997. Tuy nhiên, cũng không có cặp giá trị nào thỏa mãn điều kiện b + c = 1998. Tiếp tục thử các giá trị khác cho a và d, ta sẽ tìm được cặp giá trị thỏa mãn điều kiện.
Làm cho bạn nhưng không cho lik-e
Giận rùi không thèm làm