K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

Ta có :\(S_{ABC}=\dfrac{1}{2}.a.h_a=\dfrac{1}{2}.b.h_b=\dfrac{1}{2}.c.h_c\)

\(\Rightarrow a.h_a=b.h_b=c.h_c=2S_{ABC}=2\)

Áp dụng bất đẳng thức bunhiacopski ta có :

\(\left(a^2+b^2+c^2\right)\left(h_a^2+h_b^2+h_c^2\right)\ge\left(a.h_a+b.h_b+c.h_c\right)^2=36\)

Dấu "=" xảy ra khi tam giác ABC đều

31 tháng 5 2017

Câu hỏi của Amory Chris - Toán lớp 9 - Học toán với OnlineMath

19 tháng 10 2021

Kẻ Cx//AB và gọi D đối xứng với A qua Cx 

\(\Rightarrow CD=AC=b;AD=2h_c\)

Vì Cx//AB nên \(\widehat{BAD}=\widehat{BAC}+\widehat{DAC}=\widehat{ACx}+\widehat{DAC}=90^0\)

Xét 3 điểm B,C,D có \(BD\le BC+CD\)

Xét tg ABD vuông tại A có \(AB^2+AD^2=BD^2\le\left(BC+CD\right)^2\)

\(\Leftrightarrow c^2+4h_c^2\le\left(a+b\right)^2\\ \Leftrightarrow4h_c^2\le\left(a+b\right)^2-c^2\)

Dấu \("="\Leftrightarrow a=b\)

Cmtt \(\Leftrightarrow4h_b^2\le\left(a+c\right)^2-b^2;4h_a^2\le\left(b+c\right)^2-a^2\)

Cộng VTV 3 BĐT trên:

\(\Leftrightarrow4\left(h_a^2+h_b^2+h_c^2\right)\le\left(a+b\right)^2-c^2+\left(a+c\right)^2-b^2+\left(b+c\right)^2-a^2\\ \Leftrightarrow4\left(h_a^2+h_b^2+h_c^2\right)\le a^2+b^2+c^2+2ab+2bc+2ac=\left(a+b+c\right)^2\\ \Leftrightarrow\dfrac{\left(a+b+c\right)^2}{h_a^2+h_b^2+h_c^2}\ge4\)

Dấu \("="\Leftrightarrow a=b=c\) hay tg ABC đều

 

 

19 tháng 10 2021

VTV là j thế anh

27 tháng 3 2016

Đăng lâu nhỉ

23 tháng 10 2018

Gọi S là diện tích của tam giác

Ta có : 

\(a=\frac{2S}{h_a};b=\frac{2S}{h_b};c=\frac{2S}{h_c}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\left(a+b+c\right)\left(\frac{h_a+h_b+h_c}{2S}\right)\)

\(=\left(h_a+h_b+h_c\right).\frac{a+b+c}{2S}=\left(h_a+h_b+h_c\right)\left(\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_c}\right)\)

=> đpcm

30 tháng 5 2017

Theo đề bài thì ta có:

\(ah_a=bh_b=ch_c=2\)

Ta có:

\(\left(a^2+b^2+c^2\right)\left(h_a^2+h_b^2+h_c^2\right)\ge\left(ah_a+bh_b+ch_c\right)^2\)

\(=\left(2+2+2\right)^2=36\)

Dấu = xảy ra khi \(\hept{\begin{cases}a=b=c=\frac{2}{\sqrt[4]{3}}\\h_a=h_b=h_c=\sqrt[4]{3}\end{cases}}\) 

22 tháng 11 2016

Ta có:

\(S=pr=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)

\(\Leftrightarrow p^2r^2=p\left(p-a\right)\left(p-b\right)\left(p-c\right)\)

\(\Leftrightarrow r^2=\frac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}\)

\(\Leftrightarrow\frac{1}{r^2}=\frac{p}{\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\frac{1}{\left(p-a\right)\left(p-b\right)}+\frac{1}{\left(p-b\right)\left(p-c\right)}+\frac{1}{\left(p-a\right)\left(p-c\right)}\)

\(\Leftrightarrow\frac{1}{r^2}=4\left(\frac{1}{\left(b+c-a\right)\left(a+c-b\right)}+\frac{1}{\left(a+c-b\right)\left(a+b-c\right)}+\frac{1}{\left(b+c-a\right)\left(a+b-c\right)}\right)\)

\(\Leftrightarrow\frac{1}{4r^2}=\frac{1}{c^2-\left(a-b\right)^2}+\frac{1}{a^2-\left(b-c\right)^2}+\frac{1}{b^2-\left(c-a\right)^2}\)

\(\ge\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)(áp dụng \(x^2-y^2\le x^2\)

\(\Rightarrow4r^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\le1\)

\(\Rightarrow\frac{1}{r^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}\ge4\left(1\right)\)

Ta lại có

\(S=\frac{a.ha}{2}=pr=\frac{r\left(a+b+c\right)}{2}\)

\(\Rightarrow ha=\frac{r\left(a+b+c\right)}{a}\)

\(\Rightarrow ha^2=\frac{r^2\left(a+b+c\right)^2}{a^2}\)

Tương tự

\(hb^2=\frac{r^2\left(a+b+c\right)^2}{b^2}\)

\(hc^2=\frac{r^2\left(a+b+c\right)^2}{c^2}\)

Cộng vế theo vế ta được

\(ha^2+hb^2+hc^2=r^2\left(a+b+c\right)^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(\Rightarrow\frac{\left(a+b+c\right)^2}{ha^2+hb^2+hc^2}=\frac{1}{r^2\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{\left(a+b+c\right)^2}{ha^2+hb^2+hc^2}\ge4\)

22 tháng 11 2016

Bài làm này thật xuất sắc !

1 tháng 1 2017

Tử số cũng biến thiên theo ha, hb, hc ...Suy luận được như trên chỉ khi Tử số là một số A không đổi. 

Gọi S là diện tích tam giác, r là bánh kính đường tròn nội tiếp 

Ta có 

ha=2S/a =r(a+b+c)/a 

=> ha^2 + hb^2 + hc^2 = r^2(a+b+c)^2 * (1/a^2+1/b^2+1/c^2)} 

=> T = (a+b+c)^2/(ha^2+hb^2+hc^2) = 

=1/r^2/(1/a^2+1/b^2+1/c^2) 

Ta c/m (1/a^2+1/b^2+1/c^2) <=1/4r^2 (*) 

=> T<=1/4 

=> Max(T) = 1/4 Khi tam giác đều 

c/m bất đẳng thức (*) 

S = pr 

S= √p(p-a)(p-b)(p-c) 

=> pr= √p(p-a)(p-b)(p-c) 

=> (pr^2) = (p-a)(p-b)(p-c) 

=> 1/r^2 = p/(p-a)(p-b)(p-c) = 1/((p-a)(p-b) + 1/(p-b)(p-c) + 1/(p-a)(p-c) 

=> 1/4r^2 = 1/[a^2 - (b-c)^2] + 1/[b^2 - (a-c)^2] + 1/[c^2 - (b-a)^2] >= 1/a^2 + 1/b^2 + 1/c^2 

=> 1/4r^2>= 1/a^2 + 1/b^2 + 1/c^2 

=> (1/r^2)/ 1/a^2 + 1/b^2 + 1/c^2 >= 1/4

=> Dấu bằng xảy ra khi ha = hb = hc => Khi đó ABC là tam giác đều

21 tháng 10 2017

đăngg nhiều vậy linh, mà  đã làm đến đề đó rồi cơ à chăm thế