K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

20 tháng 9 2016

(Vẽ hình: A là đỉnh của tứ diện, BCD là đáy của tứ diện) 
+ Trên mặt phẳng đáy BCD kẻ các đường cao của tam giác BCD là BE, CF, DK.Ba đường cao gặp nhau tại H. 
+ Xét mặt phẳng ABE 
CD vuông góc BE 
CD vuông góc AB 
=> CD vuông góc với mặt phẳng ABE => CD vuông góc với AH (1) 
+ Xét mặt phẳng ACF 
BD vuông góc AC 
BD vuông góc CF 
=> BD vuông góc với mặt phẳng ACF => BD vuông góc với AH (2) 
+ Từ (1) và (2) => AH vuông góc BCD 
=> AH vuông góc với BC 
Mà BC vuông góc với DK 
=> BC vuông góc với mp ADK => BC vuông góc với AD 

21 tháng 2 2016

Lấy M là trung điểm của CD

\(AC^2-AD^2=BC^2-BD^2\)

<=> \(\left(\overrightarrow{AC}-\overrightarrow{AD}\right)\left(\overrightarrow{AC}+\overrightarrow{AD}\right)=\left(\overrightarrow{BC}-\overrightarrow{BD}\right)\left(\overrightarrow{BC}+\overrightarrow{BD}\right)\)

<=> \(2.\overrightarrow{DC}.\overrightarrow{AM}=2.\overrightarrow{DC}.\overrightarrow{BM}\)

<=> \(2.\overrightarrow{DC}.\left(\overrightarrow{AM}-\overrightarrow{BM}\right)=0\)

<=> \(2.\overrightarrow{DC}.\overrightarrow{AB}=0\)

<=> DC vuông góc với AB

21 tháng 2 2016

1/Tìm x biết: (1/2x-1004)^2008 = (1/2x-1004)^2006 
2/Cho tam giác ABC cân tại A. D là 1 điểm nằm trong tam giác, biết góc ADB > góc ADC. Chứng minh: DB<DC
giúp e với

14 tháng 7 2015

bạn hỏi thế này thì chả ai muốn làm -_- dài quá 

28 tháng 12 2015

Bạn gửi từng câu nhò thì các bạn khác dễ làm hơn!

30 tháng 4 2023

Hs lớp 12 không biết lên mạng tra xem có không rồi mới hỏi à.-.

30 tháng 4 2023

Trên mạng nhiều khi không giải như cách chúng ta học đâu bạn, liệu thầy cô có biết và xem qua đáp án trên mạng không nhỉ? Không phải là có biết lên mạng tra hay không mà đã tra và muốn có 1 cách giải khác thôi ạ!

13 tháng 8 2015

TAm giác AOB cuông tại O , theo py ta go  

=> AB^2 = OA^2 + OB^2 

Tương tự CD^2 = OC^2 + OD^2

BC^2 = OB^2 + OC^2 

AD^2 = OA^2 + OD^2 

AB^2 + CD^2 = OA^2 + OB^2 + OC^2 + CD^2 = BC^2 + AD^2 ( ĐPCM) 

1:

ΔOAB vuông tại O

=>AB^2=AO^2+BO^2

ΔBOC vuông tại O

=>BC^2=BO^2+CO^2

ΔAOD vuông tại O

=>AD^2=AO^2+DO^2

ΔDOC vuông tại O

=>DC^2=OC^2+OD^2

AB^2+BC^2+CD^2+DA^2

=OA^2+OB^2+OC^2+OD^2+OA^2+OB^2+OC^2+OD^2

=2(OA^2+OB^2+OC^2+OD^2)

2:

AB^2+CD^2

=OA^2+OB^2+OC^2+OD^2

=OA^2+OD^2+OB^2+OC^2

=AD^2+BC^2