Tìm số dư khi chia đa thức \(f\left(x\right)=x^{1234}-1\) cho đa thức \(g\left(x\right)=\left(x^2+1\right)\left(x^2-x+1\right)\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
ND
Nguyễn Đức Trí
VIP
11 tháng 8 2023
Ta thấy
\(f\left(x\right):g\left(x\right)\)
\(\Rightarrow\left(x^{100}+x^{99}+x^{98}+x^5+2020\right):\left(x^2-1\right)\)
\(=\left(x^{98}+x^{97}+2x^{96}+2x^{95}+...2x^4+3x^3+2x^2+3x+2\right)\) có số dư là \(R\left(x\right)=3x+2022\)
\(\Rightarrow R\left(2021\right)=3.2021+2022=8085\)
17 tháng 1 2017
Giả sử f(x)=(x+1)*q(x)+r (vì x+1 có bậc 1 nên dư là số r)
Thay x=-1 ta được: f(-1)=0*q(x)+r= r =(-1)^2017+(-1)^2016+1=1
Vậy dư trong phép chia \(x^{2017}+x^{2016}+1\) cho x+1 là 1
NV
Nguyễn Việt Lâm
Giáo viên
21 tháng 9 2019
Bạn vào đây xem thử
Câu hỏi của bababa ânnnanana - Toán lớp 8 | Học trực tuyến