Tính tích \(A=\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}....\dfrac{899}{900}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm y:
-y:1/2-5/2=4+1/2
-y:1/2 = 4+1/2+5/2
-y:1/2 = 7
-y = 7.2
y = -14
Vậy y = -14
\(A=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot...\cdot\dfrac{899}{900}\\ A=\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot...\cdot\dfrac{29\cdot31}{30\cdot30}\\ A=\dfrac{\left(1\cdot2\cdot3\cdot...\cdot29\right)\cdot\left(3\cdot4\cdot5\cdot...\cdot31\right)}{\left(2\cdot3\cdot4\cdot...\cdot30\right)\cdot\left(2\cdot3\cdot4\cdot...\cdot30\right)}\\ A=\dfrac{1\cdot2\cdot3\cdot...\cdot29}{2\cdot3\cdot4\cdot...\cdot30}\cdot\dfrac{3\cdot4\cdot5\cdot...\cdot31}{2\cdot3\cdot4\cdot...\cdot30}\\ A=\dfrac{1}{30}\cdot\dfrac{31}{2}\\ A=\dfrac{31}{60}\)
A=\(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}.....\dfrac{899}{900}\)
A=\(\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{29.31}{30.30}\)
A=\(\dfrac{1.3.2.4.3.5.....29.31}{2.2.3.3.4.4.....30.30}\)
A=\(\dfrac{\left(1.2.3.....28.29\right).\left(3.4.5....29.31\right)}{\left(2.3.4....29.30\right).\left(2.3.4....29.30\right)}\)
A=\(\dfrac{1.31}{30.2}\)
A=\(\dfrac{31}{60}\)
Vậy A = \(\dfrac{31}{60}\)
\(A=\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}.....\dfrac{899}{30^2}\)
\(A=\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{29.31}{30.30}\)
\(A=\dfrac{1.3.2.4.3.5.....29.31}{2.2.3.3.4.4.....30.30}\)
\(A=\dfrac{1.2.3.....29}{2.3.4....30}.\dfrac{3.4.5.....31}{2.3.4.....30}\)
\(A=\dfrac{1}{30}.\dfrac{31}{2}=\dfrac{31}{60}\)
\(B=\dfrac{8}{9}.\dfrac{15}{16}.\dfrac{24}{25}.....\dfrac{2499}{2500}\)
\(B=\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.\dfrac{4.6}{5.5}.....\dfrac{49.51}{50.50}\)
\(B=\dfrac{2.4.3.5.4.6.....49.51}{3.3.4.4.5.5....50.50}\)
\(B=\dfrac{2.3.4......49}{3.4.5....50}.\dfrac{4.5.6.....51}{3.4.5....50}\)
\(B=\dfrac{2}{50}.\dfrac{51}{3}=\dfrac{17}{25}\)
Giải:
\(A=\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}.....\dfrac{899}{30^2}.\)
\(A=\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}.....\dfrac{29.31}{30^2}.\)
\(A=\dfrac{1.2.3.....29}{2.3.4.....30}.\dfrac{2.3.4.....31}{2.3.4.....30}.\)
\(A=\dfrac{1}{30}.31=\dfrac{30}{31}.\)
Vậy \(A=\dfrac{30}{31}.\)
\(A=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot...\cdot\dfrac{899}{900}\)
\(A=\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot...\cdot\dfrac{29\cdot31}{30\cdot30}\)
\(A=\dfrac{1\cdot\left(2\cdot3\cdot4\cdot5\cdot...\cdot29\right)^2\cdot30\cdot31}{\left(2\cdot3\cdot4\cdot...\cdot30\right)^2}\)
\(A=\dfrac{1\cdot\left(2\cdot3\cdot4\cdot5\cdot...\cdot29\right)^2\cdot30\cdot31}{\left(2\cdot3\cdot4\cdot5\cdot...\cdot29\right)^2\cdot30\cdot30}\)
\(A=\dfrac{1\cdot31}{30}=\dfrac{31}{30}\)
Ta có : \(\dfrac{1}{101}>\dfrac{1}{300}\)
...
\(\dfrac{1}{299}>\dfrac{1}{300}\)
Do đó :
\(\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{300}>\dfrac{1}{300}+\dfrac{1}{300}..+\dfrac{1}{300}\)
\(\Rightarrow\dfrac{1}{101}+\dfrac{1}{102}+..+\dfrac{1}{300}>\dfrac{200}{300}=\dfrac{2}{3}\)
Vậy...
\(\dfrac{3}{2^2}.\dfrac{8}{3^2}.\dfrac{15}{4^2}.....\dfrac{899}{30^2}\)
= \(\dfrac{1.3}{2.2}.\dfrac{2.4}{3.3}.\dfrac{3.5}{4.4}.....\dfrac{29.31}{30.30}\)
= \(\dfrac{1.3.2.4.3.5.....29.31}{2.2.3.3.4.4.....30.30}\)
=\(\dfrac{\left(1.2.3.....29\right).\left(3.4.5......31\right)}{\left(2.3.4......30\right).\left(2.3.4.....30\right)}\)
= \(\dfrac{1.31}{2.30}\)
= \(\dfrac{31}{60}\)
Ta có: \(\dfrac{3}{2^2}\cdot\dfrac{8}{3^2}\cdot\dfrac{15}{4^2}\cdot...\cdot\dfrac{899}{30^2}\)
\(=\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot2^2}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot...\cdot\dfrac{29\cdot31}{30\cdot30}\)
\(=\dfrac{\left(1\cdot2\cdot3\cdot...\cdot29\right)\cdot\left(3\cdot4\cdot5\cdot...\cdot31\right)}{\left(2\cdot3\cdot4\cdot...\cdot30\right)\left(2\cdot3\cdot4\cdot...\cdot30\right)}\)
\(=\dfrac{1\cdot31}{2\cdot30}=\dfrac{31}{60}\)
\(\dfrac{1}{2}-\dfrac{3}{8}=\dfrac{4}{2\times4}-\dfrac{3}{8}=\dfrac{4}{8}-\dfrac{3}{8}=\dfrac{1}{8}\)
\(\dfrac{4}{3}-\dfrac{8}{15}=\dfrac{4\times5}{3\times5}-\dfrac{8}{15}=\dfrac{20}{15}-\dfrac{8}{15}=\dfrac{12}{15}=\dfrac{4}{5}\)
\(\dfrac{5}{6}-\dfrac{7}{12}=\dfrac{5\times2}{6\times2}-\dfrac{7}{12}=\dfrac{10}{12}-\dfrac{7}{12}=\dfrac{3}{12}=\dfrac{1}{4}\)
\(\dfrac{11}{4}-\dfrac{9}{8}=\dfrac{11\times2}{4\times2}-\dfrac{9}{8}=\dfrac{22}{8}-\dfrac{9}{8}=\dfrac{13}{8}\)
\(\dfrac{17}{16}-\dfrac{3}{4}=\dfrac{17}{16}-\dfrac{3\times4}{4\times4}=\dfrac{17}{16}-\dfrac{12}{16}=\dfrac{5}{16}\)
\(\dfrac{31}{36}-\dfrac{5}{6}=\dfrac{31}{36}-\dfrac{5\times6}{6\times6}=\dfrac{31}{36}-\dfrac{30}{36}=\dfrac{1}{36}\)
a: \(=\dfrac{8}{9}\cdot\dfrac{9}{4}\cdot\dfrac{12}{19}\cdot\dfrac{19}{24}=\dfrac{1}{2}\cdot2=1\)
b: \(=\dfrac{5}{16}\cdot\dfrac{17}{15}\cdot\dfrac{8}{17}=\dfrac{5}{16}\cdot\dfrac{8}{15}=\dfrac{40}{240}=\dfrac{1}{6}\)
c: \(=\dfrac{4}{13}\left(\dfrac{2}{7}+\dfrac{5}{7}\right)-\dfrac{3}{26}=\dfrac{4}{13}-\dfrac{3}{26}=\dfrac{5}{26}\)
c: \(=\dfrac{3}{4}\left(\dfrac{6}{11}+\dfrac{5}{11}\right)-\dfrac{1}{5}=\dfrac{3}{4}-\dfrac{1}{5}=\dfrac{11}{20}\)
\(\dfrac{1}{3}+\dfrac{2}{9}=\dfrac{3}{3\times3}+\dfrac{2}{9}=\dfrac{3}{9}+\dfrac{2}{9}=\dfrac{5}{9}\)
\(\dfrac{1}{2}+\dfrac{3}{8}=\dfrac{4}{2\times4}+\dfrac{3}{8}=\dfrac{4}{8}+\dfrac{3}{8}=\dfrac{7}{8}\)
\(\dfrac{5}{12}+\dfrac{2}{3}=\dfrac{5}{12}+\dfrac{2\times4}{3\times4}=\dfrac{5}{12}+\dfrac{8}{12}=\dfrac{13}{12}\)
\(\dfrac{5}{16}+\dfrac{3}{8}=\dfrac{5}{16}+\dfrac{3\times2}{8\times2}=\dfrac{5}{16}+\dfrac{6}{16}=\dfrac{11}{16}\)
\(\dfrac{4}{15}+\dfrac{3}{5}=\dfrac{4}{15}+\dfrac{3\times3}{5\times3}=\dfrac{4}{15}+\dfrac{9}{15}=\dfrac{13}{15}\)
\(\dfrac{8}{63}+\dfrac{7}{10}=\dfrac{8\times10}{63\times10}+\dfrac{7\times63}{10\times63}=\dfrac{80}{630}+\dfrac{441}{630}=\dfrac{521}{630}\)
\(A=\dfrac{3}{4}\cdot\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot...\cdot\dfrac{899}{900}\\ =\dfrac{1\cdot3}{2\cdot2}\cdot\dfrac{2\cdot4}{3\cdot3}\cdot\dfrac{3\cdot5}{4\cdot4}\cdot...\cdot\dfrac{29\cdot31}{30\cdot30}\\ =\dfrac{1\cdot2\cdot3\cdot...\cdot29}{2\cdot3\cdot4\cdot...\cdot30}\cdot\dfrac{3\cdot4\cdot5\cdot...\cdot31}{2\cdot3\cdot4\cdot...\cdot30}\\ =\dfrac{1}{30}\cdot\dfrac{31}{2}\\ =\dfrac{31}{60}\)
Vậy ...