Thương của một số vô tỉ và một số hữu tỉ là một số vô tỉ hay một số hữu tỉ ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Là một số vô tỉ
VD căn 2 là số vô tỉ ; 1 là hữu tỉ
căn 2 : 1 = căn 2 là số vô tỉ
Gọi a là số vô tỉ, b là số hữu tỉ khác 0.
Tích ab là số vô tỉ vì nếu ab = b' là số hữu tỉ thì \(a=\dfrac{b'}{b}\) suy ra a là số hữu tỉ, vô lí !
a) giả sử tổng số hữu tỉ và số vô tỉ là số hữu tỉ
Ta có a+b=c(a,c là số hữu tỉ ; b là số vô tỷ)
=> b=c-a
mà c-a là số hữu tỉ ( do a,c là số hữu tỉ)
=> b là số hữu tỉ trái đề bài
Vậy tổng số hữu tỉ và số vô tỉ là số vô tỉ
b) phần này cần điều kiện số hữu tỉ khi nhân kia phải khác 0
Giả sử tích một số vô tỉ và một số hữu tỉ là 1 số hữu tỉ
Ta có a.b=c (a,c là số hữu tỉ ; b là số vô tỷ, a khác 0)
=> b=c/a
mà c/a là số hữu tỉ ( do a,c là số hữu tỉ)
=> b là số hữu tỉ trái đề bài
Vậy tích một số vô tỉ và một số hữu tỉ là 1 số vô tỉ
Tích của một số vô tỉ với một số nguyên dương có thể là số hữu tỉ hoặc vô tỉ, tùy thuộc vào giá trị của số vô tỉ và số nguyên dương.
Nếu số vô tỉ là 0, thì tích của nó với bất kỳ số nguyên dương nào cũng sẽ là 0, một số hữu tỉ.
Nếu số vô tỉ khác 0, thì tích của nó với một số nguyên dương sẽ là một số vô tỉ. Điều này có thể được giải thích bằng cách giả sử tích của số vô tỉ với số nguyên dương là một số hữu tỉ. Khi đó, ta có thể viết số vô tỉ dưới dạng phân số tối giản, tức là tử số và mẫu số không có thể chia hết cho bất kỳ số nguyên dương nào. Nhưng khi nhân số vô tỉ với một số nguyên dương, tử số và mẫu số của phân số tối giản này sẽ được nhân với số nguyên dương đó, và do đó sẽ có thể chia hết cho số nguyên dương đó. Điều này trái với giả sử ban đầu, do đó tích của số vô tỉ với số nguyên dương không thể là một số hữu tỉ.
Vì vậy, tích của một số vô tỉ với một số nguyên dương có thể là số hữu tỉ hoặc vô tỉ, tùy thuộc vào giá trị của số vô tỉ và số nguyên dương
a, Gọi số nguyên dương là a ( a \(\in\) Z+)
Giả sử tích của số vô tỉ với số nguyên dương a là một số hữu tỉ thì tích đó có dạng: \(\dfrac{b}{c}\) ( b; c \(\in\) Z ; c \(\ne\) 0)
Khi đó số vô tỉ bằng: \(\dfrac{b}{c}\) : a = \(\dfrac{b}{c\times a}\) ( là một số hữu tỉ vô lý)
Nên điều giả sử là sai, vậy tích của một số vô tỉ với một số nguyên dương là số vô tỉ.
b, Giả sử chỉ có 1 số vô tỉ thì tích của số hữu tỉ với một số nguyên dương phải là một số hữu tỉ (trái với điều đã chứng minh ở trên)
Nên điều giả sử là sai. Vậy có vô số số vô tỉ
Gọi a là số vô tỉ, b là số hữu tỉ.
Ta có \(\dfrac{a}{b}\) là sô vô tỉ vì nếu \(\dfrac{a}{b}=b'\)là số hữu tỉ thì \(a=b\). \(b'\) suy ra a là số hữu tỉ, trái với giả thiết a là số vô tỉ.