tìm m để hệ phương trình sau có nghiệm duy nhất
a) \(\hept{\begin{cases}9x^2-16y^2=144\\x-y=m\end{cases}}\)
b)\(\hept{\begin{cases}x^2+y^2=1\\x-y=m\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,\hept{\begin{cases}4\left(x+y\right)=5\left(x-y\right)\\\frac{40}{x+y}+\frac{40}{x-y}=9\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}4\left(x+y\right)^2\left(x-y\right)-5\left(x-y\right)^2\left(x+y\right)=0\\40\left(x-y\right)+40\left(x+y\right)-9\left(x-y\right)\left(x+y\right)=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x^2-y^2\right)\left[4\left(x+y\right)-5\left(x-y\right)\right]=0\\80x-9\left(x^2-y^2\right)=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(x+y\right)\left(x-y\right)\left(9y-x\right)=0\\9\left(\frac{80}{9}x-x^2+y^2\right)=0\end{cases}}\)
\(\Rightarrow.......\)
\(\hept{\begin{cases}x+y=4\left(1\right)\\2x+3y=m\left(2\right)\end{cases}}\)
từ \(\left(1\right)\)ta có: \(x=4-y\)\(\left(3\right)\)
thay \(\left(3\right)\) vào \(\left(2\right)\)ta được
\(2.\left(4-y\right)+3y=m\)
\(8-2y+3y=m\)
\(8+y=m\)
\(y=m-8\) \(\left(4\right)\)
hệ phương trình có nghiệm duy nhất khi pt \(\left(4\right)\) có nghiệm duy nhất
ta thấy pt (4) luôn có nghiệm duy nhất với \(\forall y\in R\)
vậy \(\forall y\in R\)thì hệ pt đã cho có nghiệm \(\left(x;y\right)=\left(4-y;m-8\right)\)
theo bài ra \(\hept{\begin{cases}x>0\\y< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}4-y>0\\m-8< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}y>4\\m< 8\end{cases}}\)
vậy \(m< 8\) là tập hợp các giá trị cần tìm
Ta có :
\(\hept{\begin{cases}x+y=4\\2x+3y=m\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=4\\x+x+y+y+y=m\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=4\\4+4+y=m\end{cases}\Leftrightarrow\hept{\begin{cases}y=4-x\\8+4-x=m\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=4-12+m\\x=12-m\end{cases}}\Leftrightarrow\hept{\begin{cases}y=m-8\\x=12-m\end{cases}}\)
\(\Leftrightarrow\)\(x+y=m-8+12-m=4\)
\(\Leftrightarrow\hept{\begin{cases}y=4-8\\x=12-4\end{cases}\Leftrightarrow\hept{\begin{cases}y=-4\\x=8\end{cases}}}\)
Thoả mãn \(x>0;y< 0\)
Vậy \(x=8\) và \(y=-4\)
\(\hept{\begin{cases}x-my=2\left(1\right)\\mx-4y=m-2\end{cases}}\Leftrightarrow\hept{\begin{cases}mx-m^2y=2m\left(2\right)\\mx-4y=m-2\left(3\right)\end{cases}}\)
Lấy (2) - (3) => \(\left(4-m^2\right)y=m+2\) (*)
Để hpt có nghiệm duy nhất <=> pt(*) có nghiệm duy nhất <=> \(4-m^2\ne0\Leftrightarrow m\ne\pm2\)
\(\left(\text{*}\right)\Rightarrow y=\frac{m+2}{4-m^2}=\frac{m+2}{\left(2+m\right)\left(2-m\right)}=\frac{1}{2-m}\)
\(\left(1\right)\Rightarrow x=2+my=2+m\cdot\frac{1}{2-m}=\frac{4-2m+m}{2-m}=\frac{4-m}{2-m}\)
Ta có: \(y-x=\frac{1}{2-m}-\frac{4-m}{2-m}=\frac{1-4+m}{2-m}=\frac{m-3}{2-m}\)
Để \(y>x\Leftrightarrow y-x>0\) hay \(\frac{m-3}{2-m}>0\)
TH1: \(\hept{\begin{cases}m-3>0\\2-m>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>3\\m< 2\end{cases}}\) (vô lí)
TH2: \(\hept{\begin{cases}m-3< 0\\2-m< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m< 3\\m>2\end{cases}}\Leftrightarrow2< m< 3\)(tm)
Vậy ...
b, \(\hept{\begin{cases}x^2+y^2=1\\x-y=m\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(x+y\right)^2-2xy=1\\y=x-m\end{cases}}\)
\(\left(1\right)\Rightarrow\left(x+x-m\right)^2-2x\left(x-m\right)=1\)
\(\Leftrightarrow\left(2x-m\right)^2-2x\left(x-m\right)=1\Leftrightarrow4x^2-4xm+m^2-2x^2+2xm=1\)
\(\Leftrightarrow2x^2-2mx+m^2-1=0\)
Để hệ pt có nghiệm khi \(\Delta\ge0\)
\(\Delta=\left(-2m\right)^2-4\left(m^2-1\right).2=4m^2-8m^2+8=-4m^2+8\ge0\)
\(\Leftrightarrow-\sqrt{2}\le m\le\sqrt{2}\)