Hình vuông XYZT nội tiếp đường tròn tâm O bán kính R. Điểm M bất kì thuộc cung XT. \(\widehat{ZMT}\) có số đo bằng bao nhiêu ?
(A) \(22^030'\)
(B) \(45^0\)
(C) \(90^0\)
(D) Không tính được
Hãy chọn phương án đúng ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) B,A,C,D nằm trên (O) => tg ABDC nt
góc NAB=90( góc nt chắn nửa (O))=> NA là đường cao tam giác BMN
Cmtt MD là đường cao tam giác BMN=> góc AMC=DNC ( cùng phụ góc ABD)
b) MD cắt AN tại C => C là trực tâm tam giác BMN => BC vuông góc MN tại H
c)Phần này mình nghĩ bạn làm được: Cm các tg DCHN,MHCA nt; sau đó cm tam giác MHC đồng dạng MDN, tam giác NHC đồng dạng tam giác NAM=> MC.MD=MH.MN;NC.NA=NH.MN
=> NC.NA+MC.MD=MH.MN+NH.MN=MN^2
Vì tổng các góc trong tứ giác bằng \(360^0\) mà \(\widehat{CBE}+\widehat{EFC}=180^0\) nên suy ra \(\widehat{BCF}+\widehat{BEF}=180^0\)
Chọn phương án (B)
Tam giác đều ABC nội tiếp đường tròn tâm O bán kính R. Khi đó \(\widehat{BOC}\) có số đo bằng \(120^0\)
Chọn phương án (B)
Hình vuông XYZT nội tiếp đường tròn tâm O bán kính R. Điểm M bất kì thuộc cung XT. \(\widehat{ZMT}\) có số đo bằng \(45^0\)