Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn phương án (B)
Hình vuông XYZT nội tiếp đường tròn tâm O bán kính R. Điểm M bất kì thuộc cung XT. \(\widehat{ZMT}\) có số đo bằng \(45^0\)
bài làm
a, gọi H là tiếp điểm của tiếp tuyến MN
theo giả thuyết 2 tiếp tuyến AM và MH cắt nhau tại M
⇒ AM=MH ( tính chất 2 tiếp tuyến cắt nhau)
theo giả thuyết 2 tiếp tuyến HN cắt BN tại N
⇒ HN=BN ( tính chất 2 tiếp tuyến cắt nhau)
nên ta có: MN=HM=HN=\(\dfrac{1}{2}\)(AOH =HON)=90 độ
vậy góc MON=90 đọ và là tâm giác vuông tại O đường cao OH
b,theo giả thuyết 2 tiếp tuyến AM và MH cắt nhau tại M
⇒ AM=MH ( tính chất 2 tiếp tuyến cắt nhau)
theo giả thuyết 2 tiếp tuyến HN cắt BN tại N
⇒ HN=BN ( tính chất 2 tiếp tuyến cắt nhau)
Theo hệ thức lượng trong tam giác vuông: OI^2=MI.INOH2=MH.HNAM.BN=MI.NI=OI^
Vì vậy AM.BN=MI.NI=OI^2=R^2AM.BN=MH.NH=
\(OH^2\)=\(R^2\)
gọi H là điểm tiếp điểm của MN với nữa đường tròn
ta có : OM là tia phân giác của góc AOH (theo tính chất 2 tiếp tuyến cắt nhau)
ON là tia phân giác của góc BOH (theo tính chất 2 tiếp tuyến cắt nhau)
mà 2 góc MOH và HON kề bù \(\Rightarrow\) MON = 900
b) AM = HM và BN = HN (tính chất 2 tiếp tuyến cắt nhau) (1)
nên MN = HM + HN = AM + BN
vậy MN = AM + BN (đpcm)
c) từ (1) ta có : AM.BN = HM.HN
ta lại có : HM HN = OH2 = R2 (hệ thức lượng)
\(\Rightarrow\) AM.BN = R2 (đpcm)
Vì tổng các góc trong tứ giác bằng \(360^0\) mà \(\widehat{CBE}+\widehat{EFC}=180^0\) nên suy ra \(\widehat{BCF}+\widehat{BEF}=180^0\)
Chọn phương án (B)
Tam giác đều ABC nội tiếp đường tròn tâm O bán kính R. Khi đó \(\widehat{BOC}\) có số đo bằng \(120^0\)
Chọn (B) 45 °