Chứng minh rằng:
a) \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{2}{63}>2\)
b) \(\dfrac{3}{9\cdot14}+\dfrac{3}{14\cdot19}+\dfrac{3}{19\cdot24}+...+\dfrac{3}{\left(5n-1\right)\left(5n+4\right)}< \dfrac{1}{15}\)
c) \(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{9^2}\). Chứng minh rằng : \(\dfrac{2}{5}< A< \dfrac{8}{9}\)
Câu a :
Chưa nghĩ ra! Sorry nhé!!
Câu b :
Câu hỏi của Trần Thùy Linh - Toán lớp 6 | Học trực tuyến
Câu c :
Câu hỏi của Trần Thùy Linh - Toán lớp 6 | Học trực tuyến
Vào link đó mà xem, t ngại chép lại