cho tam giác ABC,AD là đường cao,BE là tia phân giác cắt AD tại F.Cm AF/FD= EA/EC
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
1 tháng 8 2018
Theo t/c đường phân giác, ta được: \(\frac{BD}{BA}=\frac{DF}{AF},\frac{BA}{BC}=\frac{EA}{EC}\)
Chứng minh được \(\Delta BAC\infty\Delta BDA\left(g.g\right)\Rightarrow\frac{BA}{BC}=\frac{BD}{BA}\)
Vậy \(\frac{DF}{FA}=\frac{AE}{EC}\)
Bạn nên suy nghĩ một lúc nếu ko làm được thì mới hỏi. Chúc bạn học tốt.
LA
27 tháng 6 2021
a) ΔABDΔABD cân tại A => BADˆ=BDAˆBAD^=BDA^ (t/c tam giác cân)
Lại có: BADˆ+DAEˆ=BACˆ=90oBAD^+DAE^=BAC^=90o
BDAˆ+ADEˆ=BDEˆ=90oBDA^+ADE^=BDE^=90o
Do đó, DAEˆ=ADEˆDAE^=ADE^
=> ΔADEΔADE cân tại E (dấu hiệu nhận biết tam giác cân)
=> AE = ED (t/c tam giác cân) (đpcm)
b) Có: AH // ED (cùng ⊥BC⊥BC)
=> HADˆ=ADEˆHAD^=ADE^ (so le trong)
= DAE (câu a)
=> AD là phân giác HACˆ(đpcm)