K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(S_{DEF}=\dfrac{DE\cdot DF}{2}=\dfrac{DH\cdot FE}{2}\)

nên \(DE\cdot DF=DH\cdot FE\)

c: Xét ΔDHE vuông tại H có HN là đường cao

nên \(DN\cdot DE=DH^2\left(1\right)\)

XétΔDHF vuông tại H có HM là đường cao

nên \(DM\cdot DF=DH^2\left(2\right)\)

Từ(1) và (2) suy ra \(DN\cdot DE=DM\cdot DF\)

hay DN/DF=DM/DE

Xét ΔDNM vuông tại D và ΔDFE vuông tại D có

DN/DF=DM/DE

Do đó: ΔDNM\(\sim\)ΔDFE

12 tháng 12 2017

\(\text{#TNam}\)

`a,` Xét Tam giác `HED` và Tam giác `HFD` có

`DE = DF (\text {Tam giác DEF cân tại D})`

\(\widehat{E}=\widehat{F}\) `(\text {Tam giác DEF cân tại D})`

`=> \text {Tam giác HED = Tam giác HDF (ch-gn)}`

`b,` Vì Tam giác `HED =` Tam giác `HFD (a)`

`-> HE = HF (\text {2 cạnh tương ứng})`

Xét Tam giác `HEM` và Tam giác `HFN` có:

`HE = HF (CMT)`

\(\widehat{E}=\widehat{F}\) `(a)`

\(\widehat{EMH}=\widehat{FNH}=90^0\)

`=> \text {Tam giác HEM = Tam giác HFN (ch-gn)}`

`-> EM = FN (\text {2 cạnh tương ứng})`

Ta có: \(\left\{{}\begin{matrix}DE=MD+ME\\DF=ND+NF\end{matrix}\right.\)

Mà `DE = DF, ME = NF`

`-> MD = ND`

Xét Tam giác `DMN: DM = DN (CMT)`

`-> \text {Tam giác DMN cân tại D}`

`->`\(\widehat{DMN}=\widehat{DNM}=\)\(\dfrac{180-\widehat{A}}{2}\)

Tam giác `DEF` cân tại `D`

`->`\(\widehat{E}=\widehat{F}=\)\(\dfrac{180-\widehat{A}}{2}\)

`->`\(\widehat{DMN}=\widehat{E}\)

Mà `2` góc này nằm ở vị trí đồng vị

`-> \text {MN // EF (t/c 2 đt' //)}`

loading...

 

a: Xét ΔDHE vuông tại H và ΔDHF vuông tại H có

DE=DF

DH chung

Do đó:ΔDHE=ΔDHF

b: EF=8cm nên HE=4cm

=>DH=3cm

c: Xét ΔDMH vuông tại M và ΔDNH vuông tại N có

DH chung

\(\widehat{MDH}=\widehat{NDH}\)

Do đó:ΔDMH=ΔDNH

Suy ra: HM=HN

7 tháng 3 2022

undefined

\(\text{a)}\text{Vì }\Delta DEF\text{ cân tại D}\)

\(\Rightarrow DE=DF\)

\(\widehat{E}=\widehat{F}\)

\(\text{Xét }\Delta DHE\text{ và }\Delta AHF\text{ có:}\)

\(DE=DF\left(cmt\right)\)

\(BH\text{ chung}\)

\(\widehat{E}=\widehat{F}\left(cmt\right)\)

\(\Rightarrow\Delta DHE=\Delta DHF\left(c-g-c\right)\)

\(\Rightarrow EH=HF\text{(hai cạnh tương ứng)}\)

\(\text{b)}\text{Vì }EH=HF\left(cmt\right)\)

\(\Rightarrow EH=\dfrac{EF}{2}=\dfrac{8}{2}=4\left(cm\right)\)

\(\text{Xét }\Delta DEH\text{ có:}\)

\(DE^2=DH^2+EH^2\)

\(\Rightarrow DH^2=DE^2-EH^2\text{(định lí Py ta go đảo)}\)

\(\Rightarrow DH^2=5^2-4^2=25-16=9\left(cm\right)\)

\(\Rightarrow DH=\sqrt{9cm}=3\left(cm\right)\)

\(\text{c)Xét }\Delta HMD\text{ và }\Delta HND\text{ có:}\)

\(DH\text{ chung}\)

\(\widehat{D_1}=\widehat{D_2}\left(\Delta DHE=\Delta DHF\right)\)

\(\widehat{DMH}=\widehat{DNH}=90^0\)

\(\Rightarrow\Delta HMD=\Delta HND\left(ch-cgv\right)\)

\(\Rightarrow HM=HN\text{( hai cạnh tương ứng)}\)
 

a: \(DE=\sqrt{15^2-12^2}=9\left(cm\right)\)

\(S_{DEF}=\dfrac{1}{2}\cdot9\cdot12=6\cdot9=54\left(cm^2\right)\)

b: Xét tứ giác DMHN có

góc DMH=góc DNH=góc MDN=90 độ

nên DMHN là hình chữ nhật

c: Xét tứ giác DHMK có

DK//MH

DK=MH

Do đó: DHMK là hình bình hành

8 tháng 5 2017

hình như đề bài thiếu dữ kiện

8 tháng 5 2017

à đúng r EF=20cn