Cho a ; b là các số thực dương. Chứng minh rằng :
\(a\sqrt{b}+b\sqrt{a}\le\left(a+b\right)\left(a^2+b^2\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 120 chia hết cho a
300 chia hết cho a
420 chia hết cho a
=> a \(\in\)ƯC(120,300.420)
Ta có:
120 = 23.3.5
300 = 22.3.52
420 = 22.3.5.7
UCLN(120,300,420) = 22.3.5 = 60
UC(120,300,420) = Ư(60) = {1;2;3;4;5;6;10;12;15;20;30;60}
Vì a > 20 nên a = {30;60}
b) 56 chia hết cho a
560 chia hết cho a
5600 chia hết cho a
=>a \(\in\)ƯC(56,560,5600)
Ta có:
56 = 23.7
560 = 24.5.7
5600 = 25.52.7
UCLN(56,560,5600) = 23.7 = 56
UC(56,560,5600) = Ư(56) = {1;2;4;7;8;14;28;56}
Vì a lớn nhất nên a = 56
Nếu chia hết cho 2 và 5, không chia hết cho 9 thì chỉ có 0 thôi, nhưng nếu mà chia hết cho cả 3 thì đề sai r đó
A = 200*
Mà A chia hết cho 2 và 5, các số chia hết cho 2 và 5 thì có chữ số tận cùng là 0
NHƯNG nếu dấu sao là 0 thì có số 2000, mà 2000 ko chia hết cho 3.
Như vậy, đề sai.
nếu đề cho a;b >=1
\(\Rightarrow\hept{\begin{cases}a\ge\sqrt{a}\\b\ge\sqrt{b}\end{cases}\Leftrightarrow a+b\ge\sqrt{a}+\sqrt{b}}\)
mà \(a^2+b^2\ge2ab>\sqrt{ab}\)
\(\Rightarrow\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\le\left(a+b\right)\left(a^2+b^2\right)\)
\(\Leftrightarrow a\sqrt{b}+b\sqrt{a}\le\left(a+b\right)\left(a^2+b^2\right)\)
đấy nếu cho a;b >= 1 nó vẫn đúng về các yếu tố nhưng hướng làm thiếu tự nhiên và dấu bằng kiểu không hiện ra tại điểm giới hạn là 1 ý
nhìn thì có vẻ bunhi nhưng lại ko phải