cho tam giác ABC cân tại A, trên BC lấy điểm M . Vẽ MF , ME lần lượt vuông góc với AB, AC. Kẻ đương cao CA,chứng minh:
a) tam giác BFM ~ tam giác CEM
b) tam giác BHC~tam giác CEM
c) ME+MF không thay đổi khi M di chuyển trên BC thế nào
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xét t/giác BFM và t/giác CEM có:
góc BFM= góc CEM (=90độ)
góc B=góc C (do t/giác ABC cân ở A)
Suy ra: t/giác BFM ~ t/giác CEM (g.g)
b, Xét t/giác BHC và t/giác CEM, có:
góc B = góc C ( do t/giác ABC cân ở A)
góc BHC=góc CEM (=90độ)
Suy ra t/giác BHC~t/giác CEM (g.g)
=> BH/CE=BC/CM (đpcm)
Tham khảo câu tương tự : Câu hỏi của Nguyen Tra - Toán lớp 8 | Học trực tuyến
a. Xét \(\Delta BFM\)và \(\Delta CEM\) có:
\(\widehat{BFM}=\widehat{CEM}\left(=90^o\right)\)
\(\widehat{FBM}=\widehat{ECM}\) (\(\Delta ABC\) cân tại A)
Do đó: \(\Delta BFM\) \(\infty\) \(\Delta CEM\) (g-g)
b. Xét \(\Delta BFM\) và \(\Delta BHC\) có:
\(\widehat{BFM}=\widehat{BHC}\left(=90^o\right)\)
\(\widehat{B}\left(chung\right)\)
Do đó: \(\Delta BFM\infty\Delta BHC\left(g-g\right)\)
Mà \(\Delta BFM\infty CEM\)
Do đó: \(\Delta BHC\infty\Delta CEM\)
Kẻ CK vuông góc với đường thằng FM.
Tứ giác HCKF có 3 góc vuông nên nó là hình chữ nhật.
Xét ∆FMB và ∆KMC:
\(\widehat{BFM}=\widehat{CKM}=90^o\)
\(\widehat{FMB}=\widehat{KMC}\) (2 góc đối đỉnh)
=> ∆FMB~∆KMC (g.g)
=> \(\widehat{FBM}=\widehat{KCM}\)
Xét ∆ECM và ∆KCM:
MC: cạnh chung
\(\widehat{ECM}=\widehat{KCM}\left(=\widehat{FBM}\right)\)
\(\widehat{CEM}=\widehat{CKM}=90^o\)
=> ∆ECM=∆KCM (ch.gn)
=> ME=MK (2 cạnh tương ứng)
Ta có: MF+ME=MF+MK=FK
Mà HCKF là hình chữ nhật(cmt) nên FK=CH
=> MF+ME=CH
Vì ∆ABC không đổi nên CH không đổi, từ đó suy ra tổng MF+ME không đổi khi M di chuyển trên BC.
a,
Xét tứ giác MEFH, có :
\(\widehat{MEF}=\widehat{EHF}=\widehat{HFM}=90^o\)
=> tứ giác MEFH là hình chữ nhật
=> ME = FH
a) ME⊥AC, FH⊥AC \(\Rightarrow\)ME//FH.
MF⊥BH, EH⊥BH \(\Rightarrow\)MF//EH.
△MEF và △HFE có: \(\widehat{MEF}=\widehat{HFE};\widehat{MFE}=\widehat{HEF};EF\) là cạnh chung.
\(\Rightarrow\)△MEF=△HFE (g-c-g).
\(\Rightarrow ME=FH\)
b) BH//ME \(\Rightarrow\widehat{FMB}=\widehat{ACB}=\widehat{DBM}\)
△DBM và △FMB có: \(\widehat{BDM}=\widehat{MFB};\widehat{DBM}=\widehat{FMB};BM\) là cạnh chung.
\(\Rightarrow\)△DBM=△FMB (ch-gn)
c) \(S_{ABM}+S_{ACN}=S_{ABC}\)
\(\Rightarrow\dfrac{1}{2}\left(MD.AB+ME.AC\right)=S_{ABC}\)
\(\Rightarrow\dfrac{1}{2}.AB\left(MD+ME\right)=S_{ABC}\)
-Do \(S_{ABC},AB\) ko đổi nên \(MD+ME\) cũng ko đổi.
d) BC cắt DK tại N.
Kẻ KG//AB (G thuộc BC).
\(\Rightarrow\left\{{}\begin{matrix}\widehat{ABC}=\widehat{CGK}\\\widehat{ACB}=\widehat{KCG}\end{matrix}\right.\Rightarrow\widehat{CGK}=\widehat{KCG}\)
\(\Rightarrow\)△KCG cân tại K nên \(CK=GK=EH\)
Có: \(BD=MF\) (△DBM=△FMB) ; \(MF=HE\)(△MEF=△HFE)
\(\Rightarrow BD=EH=GK\).
△BDN và △GKN có: \(\widehat{BDN}=\widehat{GKN};\widehat{DBN}=\widehat{KGN};BD=GK\)
\(\Rightarrow\)△BDN=△GKN (g-c-g)
\(\Rightarrow DN=KN\) nên N là trung điểm DK.
\(\Rightarrowđpcm\)
a) theo hình vẽ ta thây:
tam giác BFM ~ tam giác CEM
b) theo hình vẽ ta thấy:
tam giác BHC ~ tam giác CEM.
c) trên hình vẽ, ta thấy ME+MF ko đổi khi M di chuyển
đây là cách làm tốt nhất khi mình ko bik làm!!!
Ê!!!
Bạn không có tên á
Nếu ko có cho link cái tên đăng nhập đi
Lâu lâu vô xem tí
nha