B = (1/3 - 1)(1/6 - 1)(1/10 - 1)(1/15 - 1)(1/21 - 1)(1/28 - 1)(1/36 - 1)
giải dùm mk nhanh nhất có thể và đầy đủ nha !!!! Cảm ơn !!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
1/2 P=1/2(1-1/10-1/15-1/3-1/28-1/6-1/21)
=1/2-(1/6+1/12+1/20+1/30+1/42+1/56)
=1/2-(1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8)
=1/2-(1/2-1/8)
=1/8
suy ra P=1/4
ta có
1/2 P=1/2(1-1/10-1/15-1/3-1/28-1/6-1/21)
=1/2-(1/6+1/12+1/20+1/30+1/42+1/56)
=1/2-(1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8)
=1/2-(1/2-1/8)
=1/8
suy ra P=1/4
\(\frac{1}{2}A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\)
\(\frac{1}{2}A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(\frac{1}{2}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(\frac{1}{2}A=1-\frac{1}{10}\)
\(\frac{1}{2}A=\frac{9}{10}\)
\(A=\frac{9}{10}:\frac{1}{2}\)
\(A=\frac{18}{10}=\frac{9}{5}\)
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+\frac{1}{36}\)
\(\frac{1}{2}A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
\(\frac{1}{2}A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
\(\frac{1}{2}A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}\)
\(\frac{1}{2}A=\frac{1}{2}-\frac{1}{9}\)
\(\frac{1}{2}A=\frac{7}{18}\)
\(A=\frac{7}{18}x2\)
\(A=\frac{7}{9}\)
\(A=47.36+64.47+15\)
\(A=47.\left(36+64\right)+15\)
\(A=47.100+15\)
\(A=4700+15\)
\(A=4715\)
\(B=27+35+65+73+75\)
\(B=\left(27+73\right)+\left(35+65\right)+75\)
\(B=100+100+75\)
\(B=275\)
\(C=37+37.15+84.37\)
\(C=37.\left(1+15+84\right)\)
\(C=37.100\)
\(C=3700\)
\(D=\frac{1}{20.21}+\frac{1}{21.22}+\frac{1}{22.23}+\frac{1}{23.24}\)
\(D=\frac{1}{20}-\frac{1}{21}+\frac{1}{21}-\frac{1}{22}+\frac{1}{22}-\frac{1}{23}+\frac{1}{23}-\frac{1}{24}\)
\(D=\frac{1}{20}-\frac{1}{24}\)
\(D=\frac{24}{480}-\frac{20}{480}\)
\(D=\frac{4}{480}=\frac{1}{120}\)
\(E=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(E=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(E=1-\frac{1}{50}\)
\(E=\frac{49}{50}\)
A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{21}\) + \(\dfrac{1}{28}\) + \(\dfrac{1}{36}\)
A = 2\(\times\) ( \(\dfrac{1}{2}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\)+ \(\dfrac{1}{72}\))
A =2\(\times\)( \(\dfrac{1}{1\times2}\)+\(\dfrac{1}{2\times3}\)+\(\dfrac{1}{3\times4}\)+\(\dfrac{1}{4\times5}\)+\(\dfrac{1}{5\times6}\)+\(\dfrac{1}{6\times7}\)+\(\dfrac{1}{7\times8}\)+\(\dfrac{1}{8\times9}\))
A = 2 \(\times\) ( \(\dfrac{1}{1}\)- \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{4}\)+...+\(\dfrac{1}{8}\)-\(\dfrac{1}{9}\))
A = 2\(\times\)( 1 - \(\dfrac{1}{9}\))
A = 2 \(\times\) \(\dfrac{8}{9}\)
A = \(\dfrac{16}{9}\)
a) thấy dấu cộng ở trước số 6 thành dấu trừ
b) = 2/ 2 + 2/ 6 + 2/ 12 + 2/ 20 + 2/ 30 + 2/ 42 + 2/ 56 + 2/ 72 + 2/ 90
= 2x ( 1/ 1x2 + 1 / 2x3 + 1/ 3x4 + 1/ 4x5 + 1/ 5x6 + 1/ 6x7 + 1/ 7x8 + 1/ 8x9 + 1/ 9x10 )
= 2x ( 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 +1/5 - 1/6 +.. + 1/8- 1/9 + 1/9 - 1/10 )
=2 x( 1 - 1/10 )
=2 x 9/10 = 18/10 = 9 / 5