tính \(\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot......\cdot\left(\frac{1}{100^2}-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{5}{2}\cdot\frac{7}{5}\cdot\frac{9}{7}\cdot\frac{11}{9}\cdot...\cdot\frac{2017}{2015}\cdot\frac{2019}{2017}=\frac{2019}{2}\)
\(D=\left(1-\frac{1}{\frac{2\cdot3}{2}}\right)\cdot\left(1-\frac{1}{\frac{3\cdot4}{2}}\right)\cdot\left(1-\frac{1}{\frac{4\cdot5}{2}}\right)\cdot\left(1-\frac{1}{\frac{5\cdot6}{2}}\right)\cdot...\cdot\left(1-\frac{1}{\frac{39\cdot40}{2}}\right)\)
\(=\left(1-\frac{2}{2\cdot3}\right)\cdot\left(1-\frac{2}{3\cdot4}\right)\cdot\left(1-\frac{2}{4\cdot5}\right)\cdot\left(1-\frac{2}{5\cdot6}\right)\cdot...\cdot\left(1-\frac{2}{39\cdot40}\right)\cdot\)
Nhận xét: \(1-\frac{2}{n\left(n+1\right)}=\frac{n\left(n+1\right)-2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n+2\right)\left(n-1\right)}{n\left(n+1\right)}\)nên:
\(D=\frac{4\cdot1}{2\cdot3}\cdot\frac{5\cdot2}{3\cdot4}\cdot\frac{6\cdot3}{4\cdot5}\cdot\frac{7\cdot4}{5\cdot6}\cdot\frac{8\cdot5}{6\cdot7}\cdot...\cdot\frac{41\cdot38}{39\cdot40}=\)
\(D=\frac{4\cdot5\cdot6\cdot7\cdot...\cdot41\times1\cdot2\cdot3\cdot4\cdot...\cdot38}{2\cdot3\cdot4\cdot5\cdot...\cdot39\times3\cdot4\cdot5\cdot6\cdot..\cdot40}=\frac{1}{39}\cdot\frac{41}{3}=\frac{41}{117}\)
Ta có:
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{99}\right).\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{98}{99}.\frac{99}{100}\) \(=\frac{1.2.3...98.99}{2.3.4...99.100}=\frac{1}{100}\)
nha
B=\(\left(1-\dfrac{1}{1+2}\right)\). \(\left(1-\dfrac{1}{1+2+3}\right)\).....\(\left(1-\dfrac{1}{1+2+...+100}\right)\)
B=\(\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{6}\right)\cdot...\cdot\left(1-\dfrac{1}{\left(1+100\right)\cdot100:2}\right)\)
B=\(\dfrac{2}{3}\cdot\dfrac{5}{6}\cdot...\cdot\dfrac{101\cdot100:2-1}{101\cdot100:2}\)
B=\(\dfrac{4}{6}\cdot\dfrac{10}{12}\cdot...\cdot\dfrac{\left(101.100:2-1\right).2}{101.100}\)
B=\(\dfrac{1.4}{2.3}.\dfrac{2.5}{3.4}\cdot...\cdot\dfrac{99.102}{100.101}\)
B=\(\dfrac{1.2.3.4.....99}{3.4.5....100}.\dfrac{4.5.6.....102}{3.4.5.....101}\)
B=\(\dfrac{2}{100}\).\(\dfrac{102}{3}\)
B=\(\dfrac{17}{25}\)
\(\frac{1}{2^2}-1=\frac{1-2^2}{2^2}=\frac{\left(1-2\right)\left(1+2\right)}{2^2}=-1.\frac{3}{2^2}\)
\(\frac{1}{3^2}-1=\frac{1-3^2}{3^2}=\frac{\left(1-3\right)\left(1+3\right)}{3^2}=-2.\frac{4}{3^2}\)
Đặt nguyên biểu thức là B , ta có :
\(B=\left[-1.\left(-2\right).\left(-3\right)...\left(-99\right)\right].\frac{3.4.5...101}{\left(2.3.4.5...100\right)^2}\)
\(B=-\left(1.2.3...99\right).\frac{3.4.5...101}{\left(2.3.4.5...100\right)^2}\)
B=\(\frac{-2.\left(3.4.5...99\right)^2.100.101}{2^2\left(3.4.5...99\right)^2.100^2}=\frac{-101}{200}\)