K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2022

Cho g(x) = 0

x + 1 = 0

x = -1

Để f(x) chia hết cho g(x) thì x = -1 cũng là nghiệm của f(x)

Hay f(1) = 0

3.1² + 2.1² - 7.1 - m + 2 = 0

-2 - m + 2 = 0

m = 0

Vậy m = 0 thì f(x) chia hết cho g(x)

24 tháng 12 2022

Giải chi tiết của em đây :

F(x) = 3x2 + 2x2 - 7x - m + 2 

F(x) \(⋮\) x + 1 \(\Leftrightarrow\) F(x) \(⋮\) x - (-1)

Theo bezout ta có : F(x) \(⋮\) x - (-1) \(\Leftrightarrow\) F(-1) = 0

\(\Leftrightarrow\) 3(-1)2 + 2(-1)2 - 7.(-1) - m + 2 = 0

    3 + 2 + 7 - m + 2 =0

              14 - m = 0

                     m = 14

Kết luận với m = 14 thì F(x) chia hết cho x + 1 

 

DD
25 tháng 12 2022

Thực hiện phép chia đa thức \(f\left(x\right)\) cho \(g\left(x\right)\) ta được

\(x^4-9x^3+21x^2+x+a=\left(x^2-x-2\right)\left(x^2-8x+15\right)+a+30\)

Do đó dư của phép chia \(f\left(x\right)\) cho \(g\left(x\right)\) là \(a+30\).

a) Với \(a=-100\) dư của phép chia đa thức \(f\left(x\right)\) và \(g\left(x\right)\) là \(-100+30=-70\).

b) Để \(f\left(x\right)\) chia hết cho \(g\left(x\right)\) thì \(a+30=0\Leftrightarrow a=-30\).

Ta có:

\(P\left(x\right)=2x\left(x^3-3x+1\right)-\left(x^3-3x+1\right)+x^2-4\)

Do đó: \(P\left(a\right).P\left(b\right).P\left(c\right)=\left(a^2-4\right)\left(b^2-4\right)\left(c^2-4\right)\)

Ta có:

\(\left(x-a\right)\left(x-b\right)\left(x-c\right)=x^3-3x+1\)

\(\Rightarrow\left\{{}\begin{matrix}a+b+c=0\\ab+ac+bc=-3\\abc=-1\end{matrix}\right.\)

C1: \(\left(a^2-4\right)\left(b^2-4\right)\left(c^2-4\right)=\left(abc\right)^2-4\left(a^2b^2+b^2c^2+c^2a^2\right)+16\left(a^2+b^2+c^2\right)-4^3\)

\(=1-4.9+16.6-4^3=-3\)\(\Rightarrow P\left(a\right).P\left(b\right).P\left(c\right)=-3\)

C2: Biến đổi thêm một chút

Ta có: \(a,b,c\ne0\) nên 

 \(a^3-3a+1=0\Leftrightarrow a\left(a^2-3\right)+1=0\)\(\Rightarrow a^2-3=\dfrac{-1}{a}\)

Tương tự...

 \(\Rightarrow P\left(a\right).P\left(b\right).P\left(c\right)=\left(-\dfrac{1}{a}-1\right)\left(-\dfrac{1}{b}-1\right)\left(-\dfrac{1}{c}-1\right)\)

\(=-\left(\dfrac{1}{a}+1\right)\left(\dfrac{1}{b}+1\right)\left(\dfrac{1}{c}+1\right)\)\(=-\dfrac{a+1}{a}.\dfrac{b+1}{b}.\dfrac{c+1}{c}=abc+ac+bc+ab+a+b+c+1=-1-3+1=-3\)

26 tháng 5 2021

ai làm cho mik hết bài với

26 tháng 5 2021

ai làm cho mik với

 

13 tháng 11 2021

\(3x^2-3x\left(x-2\right)=36\\ \Leftrightarrow3x^2-\left(3x^2-6x\right)=36\\ \Leftrightarrow3x^2-3x^2+6x=36\\ \Leftrightarrow6x=36\\ \Leftrightarrow x=36:6\\ \Leftrightarrow x=6\)

16 tháng 6 2020

H(x) = 2x2 - 2x 

H(x) = 0 <=> 2x2 - 2x = 0

              <=> x( 2x - 2 ) = 0

              <=> x = 0 hoặc 2x - 2 = 0

              <=> x = 0 hoặc x = 1

Vậy nghiệm của H(x) là 0 và 1 

16 tháng 6 2020

\(H\left(x\right)=2x^2-2x=2x\left(x-1\right)\)

Để H(x) có nghiệm => 2x(x-1)=0

\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)

Vậy x=0; x=1

11 tháng 5 2022

a, \(P\left(x\right)=5x^2-3x+7\)

\(Q\left(x\right)=-5x^3-x^2+4x-5\)

b, Thay x = 1 vào Q(x) ta được 

-5 - 1 + 4 - 5 = -7 

c, \(Q\left(x\right)+P\left(x\right)=-5x^3+4x^2+x+2\)

\(Q\left(x\right)-P\left(x\right)=-5x^3-6x^2+7x-12\)

\(-5x^3+9x^2+x=0\Leftrightarrow x\left(-5x^2+9x+1\right)=0\Leftrightarrow x=0;x=\dfrac{9\pm\sqrt{101}}{10}\)

11 tháng 5 2022

d đâu bn

29 tháng 12 2021

Chọn D

9 tháng 5 2022

P(x) = \(-x^4-5x^3-6x^2+5x-1\)

Q(x) = \(x^4+5x^3+6x^2-2x+3\)

M(x) = P(x) + Q(x)

    \(-x^4-5x^3-6x^2+5x-1\)

+

       \(x^4+5x^3+6x^2-2x+3\)

     ------------------------------------

                                    \(3x+2\)

Vậy : M(x) = 3x + 2

Nghiệm của M(x) : 3x + 2 = 0

                               3x       = -2

                                 x       = \(-\dfrac{2}{3}\) 

a) \(P\left(x\right)=x^4-5x^3-1-6x^2+5x-2x^4\)

     \(P\left(x\right)=\left(x^4-2x^4\right)-5x^3-1-6x^2+5x\)

     \(P\left(x\right)=-x^4-5x^3-1-6x^2+5x\)

     \(P\left(x\right)=-x^4-5x^3-6x^2+5x-1\)

 

     \(Q\left(x\right)=3x^4+6x^2+5x^3+3-2x^4-2x\)

     \(Q\left(x\right)=\left(3x^4-2x^4\right)+6x^2+5x^3+3-2x\)

     \(Q\left(x\right)=x^4+6x^2+5x^3+3-2x\)

     \(Q\left(x\right)=x^4+5x^3+6x^2-2x+3\)

b) Ta có \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)

        \(\begin{matrix}\Rightarrow P\left(x\right)=-x^4-5x^3-6x^2+5x-1\\Q\left(x\right)=x^4+5x^3+6x^2-2x+3\\\overline{P\left(x\right)+Q\left(x\right)=0+0+0+3x+2}\end{matrix}\)

Vậy \(M\left(x\right)=3x+2\)

Cho \(M\left(x\right)=0\)

hay \(3x+2=0\)

       \(3x\)       \(=0-2\)

       \(3x\)        \(=-2\)

          \(x\)        \(=-2:3\)

          \(x\)         \(=\dfrac{-2}{3}\)

Vậy \(x=\dfrac{-2}{3}\) là nghiệm của đa thức \(M\left(x\right)\)