K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2022

Helps me !!!

 

26 tháng 4 2018

a)  Xét  \(\Delta AEB\) và   \(\Delta AFC\) có:

     \(\widehat{AEB}=\widehat{AFC}=90^0\)

     \(\widehat{A}\)  chung

suy ra:   \(\Delta AEB~\Delta AFC\) (g.g)

\(\Rightarrow\)\(\frac{AE}{AF}=\frac{AB}{AC}\) \(\Rightarrow\)\(AF.AB=AE.AC\)

b)   \(\frac{AE}{AF}=\frac{AB}{AC}\)\(\Rightarrow\)\(\frac{AE}{AB}=\frac{AF}{AC}\)

Xét  \(\Delta AEF\)và   \(\Delta ABC\) có:

           \(\frac{AE}{AB}=\frac{AF}{AC}\)  (cmt)

           \(\widehat{A}\) chung

suy ra:   \(\Delta AEF~\Delta ABC\) (c.g.c)

\(\Rightarrow\)   \(\widehat{AEF}=\widehat{ABC}\)

c)   \(\Delta AEF~\Delta ABC\)

\(\Rightarrow\)\(\frac{S_{ABC}}{S_{AEF}}=\left(\frac{AB}{AE}\right)^2=\left(\frac{3}{6}\right)^2=\frac{1}{4}\)

\(\Rightarrow\)\(S_{ABC}=4S_{AEF}\)

29 tháng 3 2022

Gửi các bạn lời giải 1 bài tương tự

https://youtu.be/mjiZSkISHgA

20 tháng 3 2018

a) Xét \(\Delta\)ABE  và \(\Delta\)ACF có

\(\widehat{A}\)là góc chung

\(\widehat{AEB}\)=\(\widehat{AFC}\)(=\(90^O\))

=> \(\Delta\)ABE đồng dạng \(\Delta\)ACF (g.g)

=> \(\frac{AE}{AF}\)=\(\frac{AB}{AC}\)

=> \(\frac{AE}{AB}\)=\(\frac{AF}{AC}\)

Xét \(\Delta\)AEF và  \(\Delta\)ABC có

\(\frac{AE}{AB}\)=\(\frac{AF}{AC}\)

Và \(\widehat{A}\)góc chung

Suy ra \(\Delta\)AEF đồng dạng \(\Delta\)ABC( c.g.c)  (1)

b) Tương tự, chứng minh \(\Delta\)BEC đồng dạng\(\Delta\)ADC ( G.G)

=> \(\frac{EC}{DC}\)=\(\frac{BC}{AC}\)

=> \(\frac{EC}{BC}\)=\(\frac{DC}{AC}\)

Xét \(\Delta\)DEC và \(\Delta\)ABC  có

 \(\frac{EC}{BC}\)=\(\frac{DC}{AC}\)

\(\widehat{C}\)góc chung

=> \(\Delta\)DEC đồng dạng \(\Delta\)ABC( c.g.c)  (2)

Từ (1) (2) => \(\Delta\)DEC đồng dạng \(\Delta\)AEF

=> \(\widehat{DEC}\)=\(\widehat{AEF}\)(3)

Mà \(\widehat{AEB}\)\(\widehat{CEB}\)\(90^O\)

=> \(\widehat{AEF}\)+\(\widehat{FEB}\)=\(\widehat{DEC}\)+\(\widehat{BED}\)(4)

Từ (3)(4) => \(\widehat{FEB}\)=\(\widehat{BED}\)

=> EH là phân giác góc FED

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

góc A chung

=>ΔAEB đồng dạng với ΔAFC

=>AE/AF=AB/AC

=>AE*AC=AB*AF và AE/AB=AF/AC

b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc A chung

=>ΔAEF đồng dạng với ΔABC

a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có

\(\widehat{BAE}\) chung

Do đó: ΔAEB\(\sim\)ΔAFC

b: Ta có: ΔAEB\(\sim\)ΔAFC

nên AE/AF=AB/AC
hay AE/AB=AF/AC

Xét ΔAEF và ΔABC có 

AE/AB=AF/AC

\(\widehat{EAF}\) chung

DO đó: ΔAEF\(\sim\)ΔABC

20 tháng 4 2020

A B C D F H E

a,Xét \(\Delta ABE\)và \(\Delta ACF\)có:

\(\widehat{A}\)Chung

\(\widehat{E}=\widehat{F}=90^0\)

\(\Rightarrow\Delta ABE~\Delta ACF\left(g.g\right)\)

\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)

Xét \(\Delta AEF\)và \(\Delta ABC\)

\(\widehat{A}\)Chung

\(\frac{AE}{AF}=\frac{AB}{AC}\left(cmt\right)\)

\(\Rightarrow\Delta AEF~ABC\left(g.g\right)\)

 b, Tương tự ta có :

ΔDBF ∼ ΔABC ( c.g.c )

Do đó : ΔAEF ∼ ΔDBF

(sai thôi nhé ^^)

Chúc bạn học tốt !

13 tháng 3 2023

sai mẹ rồi còn đâu nữa

 

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc A chung

=>ΔABE đồng dạng với ΔACF

b: ΔABE đồng dạng với ΔACF

=>AE/AF=AB/AC

=>AE/AB=AF/AC và AE*AC=AB*AF

Xét ΔAEF và ΔABC có

AE/AB=AF/AC
góc FAE chung

=>ΔAEF đồng dạng với ΔABC

 

a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB∼ΔAFC(g-g)

b) Ta có: ΔAEB∼ΔAFC(cmt)

nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔAEF∼ΔABC(c-g-c)