a)Giải phương trình: (2x^2—x—3)^2—7(2x^2—x—3)+42=0
b) Chứng minh: a^2+b^2+c^2 >= ab+bc+ac và 3(a^2+b^2+c^2) >= (a+b+c)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a bài 1:(2x+1)(3x-2)=(5x-8)(2x+1)
<=>(2x+1)(3x-2)-(5x-8)(2x+1)=0
<=>(2x+1)(3x-2-5x+8)=0
<=>(2x+1)(6-2x)=0
bước sau tự làm nốt nha !
câu b:gợi ý: tách 4x^2-1thành (2x-1)(2x+1) rồi làm như câu a
Đặng Thị Vân Anh tuy mk k cần nx nhưng dù s cx cảm ơn bn nha :)
Bài 5 :
a, Ta có : \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
=> \(\frac{3\left(2x+1\right)^2}{15}-\frac{5\left(x-1\right)^2}{15}=\frac{7x^2-14x-5}{15}\)
=> \(3\left(2x+1\right)^2-5\left(x-1\right)^2=7x^2-14x-5\)
=> \(12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)
=> \(36x+3=0\)
=> \(x=-\frac{1}{12}\)
Vậy phương trình trên có nghiệm là \(S=\left\{-\frac{1}{12}\right\}\)
b, Ta có : \(\frac{7x-1}{6}+2x=\frac{16-x}{5}\)
=> \(\frac{5\left(7x-1\right)}{30}+\frac{60x}{30}=\frac{6\left(16-x\right)}{30}\)
=> \(5\left(7x-1\right)+60x=6\left(16-x\right)\)
=> \(35x-5+60x-96+6x=0\)
=> \(101x-101=0\)
=> \(x=1\)
Vậy phương trình trên có tạp nghiệm là \(S=\left\{1\right\}\)
c, Ta có : \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
=> \(\frac{8\left(x-2\right)^2}{24}-\frac{3\left(2x-3\right)\left(2x+3\right)}{24}+\frac{4\left(x-4\right)^2}{24}=0\)
=> \(8\left(x-2\right)^2-3\left(2x-3\right)\left(2x+3\right)+4\left(x-4\right)^2=0\)
=> \(8\left(x^2-4x+4\right)-3\left(4x^2-9\right)+4\left(x^2-8x+16\right)=0\)
=> \(8x^2-32x+32-12x^2+27+4x^2-32x+64=0\)
=> \(-64x+123=0\)
=> \(x=\frac{123}{64}\)
Vậy phương trình có nghiệm là \(S=\left\{\frac{123}{64}\right\}\)
a,
\(\frac{x-1}{4}-\frac{x-2}{3}\le x-\frac{x-3}{4}\\ \Leftrightarrow\frac{3x-3-4x+8}{12}\le\frac{12x-3x+9}{12}\\ \Leftrightarrow5-x\le9x+9\\ \Leftrightarrow9x+x\ge5-9\\ \Leftrightarrow10x\ge-4\\ \Leftrightarrow x\ge-\frac{2}{5}\\ Vậy...\)
a)(2x2-x-3)2-7(2x2-x-3)+42=0
Đặt 2x2-x-3=t ta được:
t2-7t+42=0
<=>t2-7t+12,25+29,75=0
<=>(t-3,5)2+29,75=0(vô lí)
b)Ta có:(a-b)2\(\ge\)0
<=>a2-2ab+b2\(\ge\)0
<=>a2+b2\(\ge\)2ab(1)
Dấu "=" xảy ra khi và chỉ khi a-b=0<=>a=b
Tương tự ta có:
b2+c2\(\ge\)2bc(2)
c2+a2\(\ge\)2ca(3)
cộng vế với vế 1 , 2 và 3 ta có:
2(a2+b2+c2)\(\ge\)2(ab+bc+ca)(*)
<=>a2+b2+c2\(\ge\)ab+bc+ca
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)<=>a=b=c
Từ (*) =>3(a2+b2+c2)\(\ge\)2(ab+bc+ca)+a2+b2+c2=(a+b+c)2
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)<=>a=b=c