A=\(\dfrac{2}{3}+\dfrac{14}{15}+\dfrac{34}{35}+...+\dfrac{4056194}{4056195}+\left(-1006\right)\)
Tính A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\dfrac{-10}{11}.\dfrac{8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}.\dfrac{-8}{9}+\dfrac{7}{18}.\dfrac{10}{11}\)
=\(\dfrac{10}{11}(\dfrac{-8}{9}+\dfrac{7}{18})\)
=\(\dfrac{10}{11}.\dfrac{-1}{2}\)
=\(\dfrac{-5}{11}\)
b;
B = \(\dfrac{3}{14}\) : \(\dfrac{1}{28}\) - \(\dfrac{13}{21}\): \(\dfrac{1}{28}\) + \(\dfrac{29}{42}\) : \(\dfrac{1}{28}\) - 8
B = (\(\dfrac{3}{14}\) - \(\dfrac{13}{21}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{9}{42}\) - \(\dfrac{26}{42}\) + \(\dfrac{29}{42}\)) - 8
B = (\(\dfrac{-17}{42}\) + \(\dfrac{29}{42}\)) - 8
B = \(\dfrac{2}{7}\) - 8
B = \(\dfrac{2}{7}-\dfrac{56}{7}\)
B = - \(\dfrac{54}{7}\)
\(A=\dfrac{15}{34}+\dfrac{27}{21}+\dfrac{9}{34}-1\dfrac{15}{17}+\dfrac{2}{3}\)
\(A=\left(\dfrac{15}{34}+\dfrac{9}{34}-1\dfrac{15}{17}\right)+\left(\dfrac{27}{21}+\dfrac{2}{3}\right)\)
\(A=\left(\dfrac{15}{34}+\dfrac{9}{34}-\dfrac{32}{17}\right)+\left(\dfrac{27}{21}+\dfrac{2}{3}\right)\)
\(A=\left(\dfrac{15}{34}+\dfrac{9}{34}-\dfrac{64}{34}\right)+\left(\dfrac{27}{21}+\dfrac{14}{21}\right)\)
\(A=\dfrac{-20}{17}+\dfrac{41}{21}\)
\(A=\dfrac{-420}{357}+\dfrac{697}{357}=\dfrac{277}{357}\)
\(B=16\dfrac{2}{7}:\left(-\dfrac{3}{5}\right)-28\dfrac{2}{7}:\left(-\dfrac{3}{5}\right)\)
\(B=16\dfrac{2}{7}.\left(-\dfrac{5}{3}\right)-28\dfrac{2}{7}.\left(-\dfrac{5}{3}\right)\)
\(B=\left(-\dfrac{5}{3}\right)\left(16\dfrac{2}{7}-28\dfrac{2}{7}\right)\)
\(B=\left(-\dfrac{5}{3}\right)\left(-12\right)\)
\(B=20\)
\(B=\dfrac{\left(\dfrac{5}{70}-\dfrac{10\sqrt{2}}{70}+\dfrac{6\sqrt{2}}{70}\right)\cdot\dfrac{-4}{15}}{\left(\dfrac{5}{50}+\dfrac{6\sqrt{2}}{50}-\dfrac{10\sqrt{2}}{50}\right)\cdot\dfrac{5}{7}}=\dfrac{\dfrac{5-4\sqrt{2}}{70}\cdot\dfrac{-4}{15}}{\dfrac{5-4\sqrt{2}}{50}\cdot\dfrac{5}{7}}\)
\(=\dfrac{-4\left(5-4\sqrt{2}\right)}{70\cdot15}\cdot\dfrac{50\cdot7}{5\left(5-4\sqrt{2}\right)}=\dfrac{-4}{5}\cdot\dfrac{350}{70\cdot15}=\dfrac{-4}{5}\cdot\dfrac{1}{3}=\dfrac{-4}{15}\)
\(A=\dfrac{2}{3}+\dfrac{14}{15}+\dfrac{34}{35}+...+\dfrac{9998}{9999}\\ =\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{15}\right)+\left(1-\dfrac{1}{35}\right)+...+\left(1-\dfrac{1}{9999}\right)\\ =\left(1+1+1+...+1\right)\left(\text{có 50 số 1}\right)-\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{9999}\right)\\ =50\cdot1-\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{99\cdot101}\right)\\ =50-\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =50-\left(1-\dfrac{1}{101}\right)\\ =50-1+\dfrac{1}{101}\\ =49+\dfrac{1}{101}\\ =\dfrac{4949+1}{101}\\ =\dfrac{4950}{101}\)
Thực hiện phép tính bằng cách tính hợp lí
a)\(\dfrac{15}{34}+\dfrac{7}{21}+\dfrac{19}{34}-1\dfrac{15}{17}+\dfrac{2}{3}=\)
=\(\dfrac{15}{34}+\dfrac{1}{3}+\dfrac{19}{34}-1\dfrac{15}{17}+\dfrac{2}{3}\)
=\(\left(\dfrac{15}{34}+\dfrac{19}{34}\right)+\left(\dfrac{1}{3}+\dfrac{2}{3}\right)-1\dfrac{15}{17}\)
=\(1+1-\dfrac{32}{17}\)
=\(\dfrac{34}{17}-\dfrac{32}{17}\)
=\(\dfrac{2}{17}\)
b)\(\left(-2\right)^3\cdot\left(\dfrac{3}{4}-0,25\right):\left(2\dfrac{1}{4}-1\dfrac{1}{6}\right)\)
=\(-8\cdot\left(\dfrac{3}{4}-\dfrac{1}{4}\right):\left(\dfrac{9}{4}-\dfrac{7}{6}\right)\)
=\(-8\cdot\dfrac{1}{2}:\left(\dfrac{54}{24}-\dfrac{28}{24}\right)\)
=\(-4:\dfrac{13}{12}\)
=\(-4\cdot\dfrac{12}{13}\)
=\(-\dfrac{48}{13}\)
13)\(\dfrac{45}{8}\left(\dfrac{4}{15}-\dfrac{7}{8}\right)+\dfrac{45}{8}\left(\dfrac{11}{15}+\dfrac{9}{8}\right)\)
=\(\dfrac{45}{8}\left(\dfrac{4}{15}-\dfrac{7}{8}+\dfrac{11}{15}+\dfrac{9}{8}\right)\)
=\(\dfrac{45}{8}\left[\left(\dfrac{4}{15}+\dfrac{11}{15}\right)-\left(\dfrac{7}{8}-\dfrac{9}{8}\right)\right]\)
=\(\dfrac{45}{8}.\dfrac{5}{4}\)=\(\dfrac{225}{32}\)
14)\(\dfrac{15}{7}\left(\dfrac{49}{35}-\dfrac{27}{8}\right)-\left(\dfrac{2}{5}-\dfrac{27}{4}\right):\dfrac{7}{15}\)
=\(\dfrac{15}{7}\left(\dfrac{49}{35}-\dfrac{27}{8}\right)-\left(\dfrac{2}{5}-\dfrac{27}{4}\right).\dfrac{15}{7}\)
=\(\dfrac{15}{7}\left[\left(\dfrac{49}{35}-\dfrac{27}{8}\right)-\left(\dfrac{2}{5}-\dfrac{27}{4}\right)\right]\)
=\(\dfrac{15}{7}\left(\dfrac{49}{35}-\dfrac{27}{8}-\dfrac{2}{5}+\dfrac{27}{4}\right)\)
=\(\dfrac{15}{7}.\dfrac{35}{8}\)=\(\dfrac{75}{8}\)
\(A=\dfrac{2}{3}+\dfrac{14}{15}+\dfrac{34}{35}+...+\dfrac{4056194}{4056195}+\left(-1006\right)\\ =\left(1-\dfrac{1}{3}\right)+\left(1-\dfrac{1}{15}\right)+\left(1-\dfrac{1}{35}\right)+...+\left(1-\dfrac{1}{4056195}\right)+\left(-1006\right)\\ =\left[1+1+1+...+1+\left(-1006\right)\right]-\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{4056195}\right)\\ =1-\left(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+...+\dfrac{1}{4056195}\right)\\ =1-\dfrac{1}{2}\cdot\left(\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+...+\dfrac{2}{4056195}\right)\\ =1-\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{2013\cdot2015}\right)\\ =1-\dfrac{1}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2013}-\dfrac{1}{2015}\right)\\ =1-\dfrac{1}{2}\cdot\left(1-\dfrac{1}{2015}\right)\\ =1-\dfrac{1}{2}\cdot\dfrac{2014}{2015}\\ =1-\dfrac{1007}{2015}\\ =\dfrac{1008}{2015}\)
Cám ơn nha