Bài 1: Tìm số dư của:
a,1995^n+1996^n+1997^n với n thuộc N khi chia cho 2
b,2014^2015 - 2013^2014 khi chia cho 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(1995^n\equiv1\)(mod 2);
\(1996^n\equiv0\)(mod 2); \(1997^n\equiv1\)(mod 2).
\(\Rightarrow1995^n+1996^n+1997^n\equiv1+0+1\equiv0\)(mod 2).
Vậy số dư là 0.
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)