K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2021

Gọi Bx là tia đối của tia BA. Lấy E trên AC sao cho AB = AE

Xét tam giác BAD=EAD c-g-c => BD = DE và DEC = CBx 

Trong tam giác ABC, BAC + ABC + ACB = 180 => ACB = 180 - BAC - ABC => ACB < 180 - ABC

Ta có DBx + ABC = 180 (hai góc kề bù) => DBx = 180 - ABC

=>ACB < DBx => ACB < DEC => Trong tam giác DEC, DC > DE (Quan hệ giữa góc và cạnh)

Vậy BD < DC

a: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có

góc B chung

Do đó: ΔAHB\(\sim\)ΔCAB

Suy ra: BA/BC=BH/BA

hay \(BA^2=BH\cdot BC\)

b: \(BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

\(HB=\dfrac{AB^2}{BC}=9\left(cm\right)\)

HC=BC-HB=16(cm)

17 tháng 12 2019

A F E D B M C

a) Xét \(\Delta\)DMB và \(\Delta\)DMC có:

DM chung 

^DMB = ^DMC ( = 1v )

BM = MC ( M là trung điểm BC ) 

=> \(\Delta\)DMB = \(\Delta\)DMC ( c. g. c)

b) Từ (a) => ^DCM = ^DBM  => ^ACB = ^EBC ( 1)

=> ^EAD = ^ACB = ^EBC = ^AED ( so le trong; AE// BC )

=> \(\Delta\)ADE cân tại D 

=> DA = DE mà từ (a) => DB = DC 

=> BE = AC ( 2)

Từ (1); (2)  và cạnh BC chung 

=> \(\Delta\)BEC = \(\Delta\)CAB.( c. g.c)

  Cho tam giác ABC vuông tại A ( AB < AC ). Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. a) Tia AB và tia CD cắt nhau tại E. chứng minh BE/BA = DE/DC b) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thẳng AD, BC tại I , K. Chứng minh EI=EK c) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao...
Đọc tiếp
  Cho tam giác ABC vuông tại A ( AB < AC ). Kẻ AH vuông góc với BC tại H. Qua B kẻ đường thẳng vuông góc với AB , cắt đường thẳng AH tại D. a) Tia AB và tia CD cắt nhau tại E. chứng minh BE/BA = DE/DC b) Qua E kẻ đường thẳng song song với AC , đường thẳng này lần lượt cắt các đường thẳng AD, BC tại I , K. Chứng minh EI=EK c) Gọi N là giao điểm của EH và AC ; Gọi Q là giao điểm của DN và BC ; Gọi P là giao điểm của BN và AD . Chúng minh : NA = NC và PQ // BD.                              d ) Gọi G là giao điểm của đường thẳng AQ và CD . Qua Q kẻ đường thẳng song song với CE , cắt đường thẳng AC tại T. Chứng minh GH // AC và PT vuông góc  với AD.    Giúp mik câu c) và d) với! (các bạn cứ coi như câu a) và b) đã có sẵn trg giả thiết đi, vì mk mới giải đc 2 câu đấy thôi.) Thanks
0