K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2017

Hệ thức lượng trong tam giác vuông

c) \(cotg44^0.cotg45^0.cotg46^0=cotg45^0=1\)

(vì \(cotg44^0=tg46^0\) (do \(44^0+46^0=90^0\) )

\(tg46^0.cot46^0=1\) )

18 tháng 5 2017

a)
\(2sin30+3sin45^o-sin60^o=2.\dfrac{1}{2}+3.\dfrac{\sqrt{2}}{2}-\dfrac{\sqrt{3}}{2}\)\(=\dfrac{2+3\sqrt{2}-\sqrt{3}}{2}\).
b)\(2cos30^o+3sin45^o-cos60^o=2.\dfrac{\sqrt{3}}{2}+3.\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}\)\(=\dfrac{2\sqrt{3}+3\sqrt{2}-1}{2}\).

30 tháng 5 2018

a,2.\(\dfrac{1}{2}\)-2.\(\dfrac{1}{2}\)+1=1

sin 30=cos60=\(\dfrac{1}{2}\)

tan45=cot45=1

24 tháng 4 2017

Dùng tính chất sinα<tgαcosα<cotgα.

ĐS:

a) tg25∘>sin25∘;

b) cotg32∘>cos32∘;

c) tg45∘>sin45∘=cos45∘;

d) cotg60∘>cos60∘=sin30∘.

18 tháng 5 2017

a)
\(A=cos^230^o-sin^230^o=\left(\dfrac{\sqrt{3}}{2}\right)^2-\left(\dfrac{1}{2}\right)^2=\dfrac{1}{2}\);
\(B=cos60^o+sin45^o=\dfrac{1}{2}+\dfrac{\sqrt{2}}{2}\).
Vì vậy \(A< B\).
b)
\(C=\dfrac{2tan30^o}{1-tan^230^o}=\dfrac{2\dfrac{\sqrt{3}}{2}}{1-\left(\dfrac{\sqrt{3}}{2}\right)^2}=\sqrt{3}\).
\(D=\left(-tan135^o\right)tan60^o=-\left(-1\right).\sqrt{3}=\sqrt{3}\).
Vậy \(C=D\).

4 tháng 11 2016

Ta có : \(cos30^0=sin60^0\)

\(cos15^0=sin75^0\)

Sắp xếp : \(sin30^0,sin40^0,sin60^0,sin75^0,sin89^0.\)

4 tháng 11 2016

Ta có: \(\cos30^o=\sin60^0\), \(\cos15^0=\sin75^0\)

\(\sin30^0< \sin40^0< \sin60^0< \sin75^0< \sin89^0\)

\(\Leftrightarrow\sin30^0< \sin40^0< \cos60^0< \cos75^0< \sin89^0\)

 

30 tháng 7 2015

a) ta có tan 25 =sin25 phần cos25 và sin25=sin25 phần 1 suy ra sin25 phần cos25> sin25 phần 1 (vì cos25 <1) vậy tan25>sin25( điều 1)

b) ta có cot32= cos32 phần sin32 và cos32= sos32 phần 1 suy ra cos32 phần sin32>cos32 phần 1(vì sin32<1) vậy cot32>cos32

c) ta có tan45=sin45 phần cos45 và cos45= cos45= cos45 phần 1 suy ra sin45 phần cos45> cos45 phần 1(vì cos45<1) vậy tan45>cos45

d) ta có cot60=cos60 phần sin60 và sin30 =cos60 phần 1 suy ra cos60 phần sin60> cos60 phần 1 (vì sin60 <1) vậy cot60>sin30

17 tháng 9 2017

trong bài 14 (sgk -77) có yêu cầu chứng minh tan = sin phần cos đó bạn 

12 tháng 8 2020

Chú ý 2 điều: \(\cos45^o=\sin45^o=\frac{\sqrt{2}}{2}\) và \(\cos^2a+\sin^2a=1\)

Do đó: 

a) \(A=\cos^252^o.\frac{\sqrt{2}}{2}+\sin^252^o.\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}\left(\cos^252^o+\sin^252^o\right)=\frac{\sqrt{2}}{2}.1=\frac{\sqrt{2}}{2}\)

b) \(B=\frac{\sqrt{2}}{2}.\cos^247^o+\frac{\sqrt{2}}{2}.\sin^247^o=\frac{\sqrt{2}}{2}\left(\cos^247^o+\sin^247^o\right)=\frac{\sqrt{2}}{2}.1=\frac{\sqrt{2}}{2}\)