K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2015

Q=(100-99)(100+99)+.....(2-1)(2+1)

Q=100+99+.........+2+1=5050

 

7 tháng 4 2018

\(=2^{100}-\left(2^{99}+2^{98}+2^{97}+...+2+1\right)\)

Đặt \(B=1+2+2^2+...+2^{98}+2^{99}\)

\(\Rightarrow2B=2+2^2+2^3+...+2^{100}\)

\(\Rightarrow B=\left(2+2^2+2^3+..+2^{100}\right)-\left(1+2+2^2+...+2^{99}\right)\)

\(\Rightarrow B=2^{100}-1\)

\(\Rightarrow2^{100}-2^{99}-2^{98}-....-2-1=2^{100}-\left(2^{100}-1\right)\)

\(=1\)

29 tháng 7 2019

a)

C = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = − 1 + − 1 + ... + − 1 + − 1 = − 1.50 = − 50.

b)

B = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100 = 1 − 2 + − 3 + 4 + 5 − 6 + ... + 97 − 98 + − 99 + 100 = − 1 + 1 + − 1 + ... + − 1 + 1 = − 1 + 1 + − 1 + 1 + ... + − 1 + 1 − 1 = 0 + 0 + ... + 0 − 1 = − 1.

21 tháng 6 2019

#)Giải :

B = 2100 - 299 + 298 - 297 + ... + 22 - 2 

=>2B = 2101 - 2100 + 299 - 298 + ... + 23 - 22

=>2B + B = ( 2101 - 2100 + 299 - 298 + ... + 23 - 22 ) + ( 2100 - 299 + 298 - 297 + ... + 22 - 2 )

=>3B = 2201 - 2

=>B = 2201 - 2 / 3

21 tháng 6 2019

\(B=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

\(2B=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

\(\Rightarrow2B+B=2^{101}-2^2\)

\(\Rightarrow3B=2^{101}-2^2\)

\(\Rightarrow B=\frac{2^{101}-2^2}{3}\)

17 tháng 6 2018

C = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = − 1 + − 1 + ... + − 1 + − 1 = − 1.50 = − 50.

13 tháng 6 2016

\(A+1=2^{100}-2^{99}+2^{98}-...-2+1.\)

\(3\cdot\left(A+1\right)=\left(2+1\right)\left(2^{100}-2^{99}+2^{98}-...-2+1\right).\)

\(3\cdot\left(A+1\right)=2^{101}+1\)

\(A=\frac{1}{3}\cdot\left(2^{101}+1\right)-1=\frac{2^{101}-2}{3}\)

31 tháng 12 2015

chắc là 51 nhé!!!!!!!!!!!!!!!!!!!!!!!!!

 

20 tháng 8 2016

\(1-2+3-4+5-6+.......+97-98+99-100+101\)

\(=\left(1-2\right)+\left(3-4\right)+\left(4-5\right)+.....+\left(97-98\right)+\left(99-100\right)+101\)

\(=50.\left(-1\right)+101=51\)

20 tháng 3 2017

D = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100 = 1 − 2 + − 3 + 4 + 5 − 6 + ... + 97 − 98 + − 99 + 100 = − 1 + 1 + − 1 + ... + − 1 + 1 = − 1 + 1 + − 1 + 1 + ... + − 1 + 1 − 1 = 0 + 0 + ... + 0 − 1 = − 1.

đặt \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)

 \(\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}=\frac{100-1}{1}+\frac{100-2}{2}+...+\frac{100-99}{99}\)

\(=\frac{100}{1}-1+\frac{100}{2}-1+...+\frac{100}{99}-1=\left(\frac{100}{1}+\frac{100}{2}+...+\frac{100}{99}\right)-\left(1+1+...+1\right)\)

\(100+\left(\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}\right)-99=1+100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\right)=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)\(\Rightarrow\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}}=\frac{B}{100B}=\frac{1}{100}\)