Chứng minh (n+2)2-(n-2)2 chia hết cho 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) P=(a+5)(a+8) chia hết cho 2
Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2
Vậy P luôn chia hết cho 2 với mọi a
b) Q= ab(a+b) chia hết cho 2
Nếu a chẵn => ab(a+b) chia hết cho 2
Nếu b chẵn => ab(a+b) chia hết cho 2
Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2
Vậy Q luôn chia hết cho 2 với mọi a và b
bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).
Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10 (1)
ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2
=> 5n(n-1)n(n+1) chia hết cho 10 (2)
Từ (1) và (2) => n5- n chia hết cho 10
n^2 - 1 = (n-1)(n+1) do là 2 số chẵn liên tiếp => 1 số chia hết 2, 1 số chia hết 4 => đpcm
a) Ta có: ( n + 3 ) 2 - ( n - 1 ) 2 = 8(n +1) chia hết cho 8.
b) Ta có: ( n + 6 ) 2 - ( n - 6 ) 2 = 24n chia hết cho 24.
a, (n+2)2-(n-2)2=(n+2+n-2)(n+2-n+2)
=2n.4
=8n\(⋮\)8
Vậy....
b, (n+7)2-(n-5)2=(n+7+n-5)(n+7-n+5)
=2(n-1).12
=24(n-1)\(⋮\)24
Vậy...