K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔABC cân tại A

b: ΔABC đều

7 tháng 12 2021

giúp mik vs mik cần gấp

 

a: \(\widehat{B}=90^0-30^0=60^0\)

XétΔABC vuông tại A có 

\(\sin C=\dfrac{AB}{BC}\)

nên AB=5cm

=>\(AC=5\sqrt{3}\left(cm\right)\)

b: \(\widehat{C}=90^0-30^0=60^0\)

Xét ΔABC vuông tại A có 

\(\sin C=\dfrac{AB}{BC}\)

hay \(BC=16\sqrt{3}\left(cm\right)\)

=>\(AC=8\sqrt{3}\left(cm\right)\)

AH
Akai Haruma
Giáo viên
17 tháng 6 2021

a.

Áp dụng hệ thức lượt trong tam giác vuông ta có:

$\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}$

$\Leftrightarrow \frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AB^2}=\frac{1}{3a^2}$

$\Rightarrow AC=\sqrt{3}a$

$BC=\sqrt{AB^2+AC^2}=\sqrt{a^2+3a^2}=2a$

b.

$HB=\frac{BC}{4}$ thì $HC=\frac{3}{4}BC$

$\Rightarrow \frac{HB}{HC}=\frac{1}{3}$

Áp dụng hệ thức lượt trong tam giác vuông:

$AB^2=BH.BC; AC^2=CH.BC$

$\Rightarrow \frac{AB}{AC}=\sqrt{\frac{BH}{CH}}=\frac{\sqrt{3}}{3}$

Áp dụng định lý Pitago:

$4a^2=BC^2=AB^2+AC^2=(\frac{\sqrt{3}}{3}.AC)^2+AC^2$

$\Rightarrow AC=\sqrt{3}a$

$\Rightarrow AB=a$

 

AH
Akai Haruma
Giáo viên
17 tháng 6 2021

c. 

Áp dụng hệ thức lượt trong tam giác vuông:

$AB^2=BH.BC$

$\Leftrightarrow AB^2=BH(BH+CH)$

$\Leftrightarrow a^2=BH(BH+\frac{3}{2}a)$

$\Leftrightarrow BH^2+\frac{3}{2}aBH-a^2=0$

$\Leftrightarrow (BH-\frac{a}{2})(BH+2a)=0$

$\Rightarrow BH=\frac{a}{2}$
$BC=BH+CH=2a$

$AC=\sqrt{BC^2-AB^2}=\sqrt{3}a$

d. Tương tự phần a.

a: góc C=90-40=50 độ

sin C=AB/BC

=>7/BC=sin50

=>BC=9,14(cm)

=>\(AC\simeq5,88\left(cm\right)\)

b: góc B=90-30=60 độ

sin C=AB/BC

=>AB/16=1/2

=>AB=8cm

=>AC=8*căn 3(cm)

c: BC=căn 18^2+21^2=3*căn 85(cm)

tan C=AB/AC=6/7

=>góc C=41 độ

=>góc B=49 độ

d: AB=căn 13^2-12^2=5cm

sin C=AB/BC=5/13

=>góc C=23 độ

=>góc B=67 độ

a: Xét ΔABI vuông tại B và ΔAHI vuông tại H có

AI chung

\(\widehat{BAI}=\widehat{HAI}\)

Do đó: ΔABI=ΔAHI

b: Ta có: ΔABI=ΔAHI

nên AB=AH

hay ΔABH cân tại A

mà \(\widehat{BAH}=60^0\)

nên ΔABH đều

c: Xét ΔBIK vuông tại B và ΔHIC vuông tại H có

IB=IH

\(\widehat{BIK}=\widehat{HIC}\)

Do đó: ΔBIK=ΔHIC

Suy ra: BK=HC

27 tháng 2 2022

Cảm ơn bạn nhiều 👍❤️

a: Ta có: ΔBDA vuông tại D

mà DM là đường trung tuyến

nên DM=AM=MB=AB/2

Xét ΔAMD có MA=MD

nên ΔMAD cân tại M

mà \(\widehat{MAD}=60^0\)

nên ΔMAD đều

Xét ΔMBD có MB=MD

nên ΔMBD cân tại M