K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2015

C=20+21+2.(22+23+ ... +29+210)+211+212

\(2C=2^1+2^2+2.\left(2^3+2^4+...+2^{10}+2^{11}\right)+2^{12}+2^{13}\)

\(\Rightarrow2C-C=\left(2^{13}+2^2\right)-\left(2^{11}+2^3\right)\)

Vậy C = 213 + 22 - 211 - 23

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

1/

Tổng A là tổng các số hạng cách đều nhau 4 đơn vị.

Số số hạng: $(101-1):4+1=26$

$A=(101+1)\times 26:2=1326$

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

2/

$B=(1+2+2^2)+(2^3+2^4+2^5)+(2^6+2^7+2^8)+(2^9+2^{10}+2^{11})$

$=(1+2+2^2)+2^3(1+2+2^2)+2^6(1+2+2^2)+2^9(1+2+2^2)$

$=(1+2+2^2)(1+2^3+2^6+2^9)$

$=7(1+2^3+2^6+2^9)\vdots 7$

24 tháng 8 2021

`A=2^{0}+2^{1}+2^{2}+....+2^{99}`

`=(1+2+2^{2}+2^{3}+2^{4})+(2^{5}+2^{6}+2^{7}+2^{8}+2^{9})+......+(2^{95}+2^{96}+2^{97}+2^{97}+2^{99})`

`=(1+2+2^{2}+2^{3}+2^{4})+2^{5}(1+2+2^{2}+2^{3}+2^{4})+.....+2^{95}(1+2+2^{2}+2^{3}+2^{4})`

`=31+2^{5}.31+....+2^{95}.31`

`=31(1+2^{5}+....+2^{95})\vdots 31`

24 tháng 8 2021

\(A=2^0+2^1+2^2+2^3+2^4+2^5+2^6+...+2^{99}\)

\(=\left(2^0+2^1+2^2+2^3+2^4\right)+2^5\left(2^0+2^1+2^2+2^3+2^4\right)+...+2^{95}\left(2^0+2^1+2^2+2^3+2^4\right)=31+31.2^5+...+31.2^{95}=31\left(1+2^5+...+2^{95}\right)⋮31\)

17 tháng 3 2018

Ta có:

A = 2 + 22 + 23 + 24 + 25 + 26 + 27 + 28 + 29 + 210

= (2 + 22) + (23 + 24) + (25 + 26) + (27 + 28) + (29 + 210)

= 2 . (1 + 2) + 23 . (1 + 2) + 25 . (1 + 2) + 27 . (1 + 2) + 29 . (1 + 2)

= 2 . 3 + 23 . 3 + 25 . 3 + 27 . 3 + 29 . 3

= 3 . (2 + 23 + 25 + 27 + 29)

Vậy A ⋮ 3

3 tháng 8 2020

A = 2 + 22 + 23 + ... + 210 (10 số hạng)

 = (2 + 22) + (23 + 24) + ... + (29 + 210) (5 cặp số)

= 2(1 + 2) + 23(1 + 2) + ... + 29(1 + 2)

= (1 + 2)(2 + 23 + ... + 29)

= 3(2 + 23 + ... + 29\(⋮\)3

=> A  \(⋮\)3

3 tháng 8 2020

Đề bài có bị sai không vậy ạ.Mình thấy hơi sai sai

16 tháng 11 2016

Tổng đó không chia hết cho 7 

Chúc bạn học tốt

16 tháng 11 2016

không

13 tháng 12 2020

Có vì mỗi số hạng của tổng đều chia hết cho 2 do là lũy thừa của 2

tổng trên chia hết cho 2 vì mỗi số hạng ở tổng trên đều chia hết cho 2

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:

$A=\frac{2^{10}+2-1}{2^9+1}=\frac{2(2^9+1)-1}{2^9+1}=2-\frac{1}{2^9+1}$

$B=\frac{2^{12}+1}{2^{11}+1}=\frac{2(2^{11}+1)-1}{2^{11}+1}=2-\frac{1}{2^{11}+1}$

Vì $2^9+1< 2^{11}+1\Rightarrow \frac{1}{2^9+1}> \frac{1}{2^{11}+1}$

$\Rightarrow 2-\frac{1}{2^9+1}< 2-\frac{1}{2^{11}+1}$

$\Rightarrow A< B$