K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}=\sqrt{a}\sqrt{3a+b}+\sqrt{b}\sqrt{3b+a}\)

\(\le\sqrt{\left(a+b\right)\left(3a+b+3b+a\right)}=2\left(a+b\right)\)

\(\Rightarrow\dfrac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\dfrac{a+b}{2\left(a+b\right)}=\dfrac{1}{2}\)

Đẳng thức xảy ra khi \(a=b\)

12 tháng 5 2019

giải thích chỗ đang <= rồi chuyển sang >= là sao

 

30 tháng 12 2019

ta có :\(\sqrt{a+b}=\sqrt{a-1}+\sqrt{b-1}\left(a>0;b>0\right)\)

\(\Leftrightarrow a+b=a+b-2+2\sqrt{\left(a-1\right)\left(b-1\right)}\)

\(\Leftrightarrow\sqrt{\left(a-1\right)\left(b-1\right)}=1\)

\(\Leftrightarrow\left(a-1\right)\left(b-1\right)=1\)

\(\Leftrightarrow ab-a-b+1=1\Leftrightarrow ab-a-b=0\)(1)

ta lại có :\(\frac{1}{a}+\frac{1}{b}=1\Leftrightarrow\frac{a+b}{ab}=1\Leftrightarrow ab=a+b\left(2\right)\)

từ (1) và (2) \(\Leftrightarrow a+b-a-b=0\Leftrightarrow0=0\)(luôn đúng)

=> đpcm

27 tháng 12 2017

a)

\(7\sqrt{12}+\frac{1}{3}\sqrt{27}-\sqrt{75}\)

\(=14\sqrt{3}+\sqrt{3}-5\sqrt{3}\)

\(=10\sqrt{3}\)

b)

\(\left(2\sqrt{20}+\sqrt{125}-3\sqrt{80}\right):5\)

\(=\left(4\sqrt{5}+5\sqrt{5}-12\sqrt{5}\right):5\)

\(=-3\sqrt{5}:5\)

\(=\frac{-3\sqrt{5}}{5}\)

c)

\(3\sqrt{12a}-5\sqrt{3a}+\sqrt{48a}\)

\(=6\sqrt{3a}-5\sqrt{3a}+4\sqrt{3a}\)

\(=5\sqrt{3a}\)

13 tháng 5 2018

bạn làm dc chưa

17 tháng 5 2018

Lm đc r

23 tháng 6 2017

Ta có \(\sqrt{a}=a^2\)

\(\sqrt{b}=b^2\)

Vì a <b \(\Rightarrow a^2< b^2\)

\(\Leftrightarrow\sqrt{a}< \sqrt{b}\)