cho a^4 +b^4 +c^4+d^4 =4abcd
CMR a=b=c=d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cosi cho 4 số không âm : \(a^4,b^4,c^4,d^4\), ta được ;
\(a^4+b^4+c^4+d^4\ge4.\sqrt[4]{a^4.b^4.c^4.d^4}=4abcd\)
Dấu đẳng thức xảy ra <=> a = b = c = d
Do đó, ta có đpcm.
*\(\cdot a^4+b^4+c^4+d^4\ge2a^2d^2\)(1)
*\(a^2b^2+c^2d^2\ge2abcd\)(2)
Từ (1) và (2) suy ra: \(a^4+b^4+c^4+d^4\ge4abcd\)
Áp dụng BĐT cosi cho 4 số ta có
\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4.b^4.c^4.d^4}\)
⇔ ≥ 4abcd(đpcm)
`a^4+b^4+c^4+d^4=4abcd`
`<=>a^4-2a^2b^2+b^4+c^4-2c^2d^2+d^4=4abcd-2a^2b^2-2c^2d^2`
`<=>(a^2-b^2)^2+(c^2-d^2)^2+2(a^2b^2-2abcd+c^2d^2)>=0`
`<=>(a^2-b^2)^2+(c^2-d^2)^2+2(ab-cd)^2=0`
Vì `VT>=0AA a,b,c,d`
Dấu "=" xảy ra khi `a^2=b^2,c^2=d^2,ab=cd`
`<=>a=b=c=d`
áp dụng BDT AM-GM
\(=>a^4+b^4\ge2\sqrt{\left(ab\right)^4}=2a^2b^2\left(1\right)\)
\(=>c^4+d^4\ge2\sqrt{c^4d^4}=2c^2d^2\left(2\right)\)
(1)(2)\(=>a^4+b^4+c^4+d^4\ge2\left(a^2b^2+c^2d^2\right)\ge4abcd\)
dấu"=" xảy ra\(< =>\left\{{}\begin{matrix}a^4=b^4\\c^4=d^4\end{matrix}\right.< =>a=b=c=d}\)
câu a bạn phân tích \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ac\right)\)
rồi suy ra bình thường nha
\(a^4+b^4+c^4+d^4=4abcd\Leftrightarrow a^4+b^4+c^4+d^4-4abcd=0\Leftrightarrow a^4-2^2b^2+b^4+c^4-2c^2d^2+d^4-4abcd+2a^2b^2+2c^2d^2=\left(a^2+b^2\right)^2+\left(c^2-d^2\right)^2+2\left(ab+cd\right)^2\)
Cho 4 số a,b,c,d dương
Áp dụng bất đẳng thức Cauchy cho 4 sô
\(\Rightarrow a^4+b^4+c^4+d^4\ge4\sqrt{4}\left(a^4.b^4.c^4.d^4\right)\)
\(\Leftrightarrow a^4+b^4+c^4+d^4\ge4abcd\) (ĐPCM)
C1: Do \(a^4;b^4;c^4;d^4\ge0\) nên áp dụng BĐT cauchy cho 4 số không âm ta có:
\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4.b^4.c^4.d^4}=4abcd\)
C2: Ta có: \(a^4+b^4+c^4+d^4\ge2\sqrt{a^4.b^4}+2\sqrt{c^4.d^4}=\)
\(=2a^2b^2+2c^2d^2\ge2\sqrt{2a^2b^2+2c^2d^2}=4abcd\)
\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4b^4c^4d^4}=4\left|abcd\right|\ge4abcd\)
Dấu "=" xảy ra nên: \(a=b=c=d\)
\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)\left(1+1\right)=16\)
\(\left\{{}\begin{matrix}A=\left(a^4+b^4\right)\ge\dfrac{\left(a^2+b^2\right)^2}{2}\ge\dfrac{\left[\dfrac{\left(a+b\right)^2}{2}\right]^2}{2}\ge\dfrac{\left[\dfrac{4ab}{2}\right]^2}{2}\\B=\left(c^4+d^4\right)\ge\left(c^2+d^2\right)^2\ge\dfrac{\left[\dfrac{\left(c+d\right)^2}{2}\right]^2}{2}\ge\dfrac{\left[\dfrac{4cd}{2}\right]^2}{2}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}A\ge\dfrac{\left(2ab\right)^2}{2}\\B\ge\dfrac{\left(2cd\right)^2}{2}\end{matrix}\right.\)(1)
\(\left\{{}\begin{matrix}A\ge0\\B\ge0\end{matrix}\right.\)(2)
(1) và (2) \(\Rightarrow A+B\ge\dfrac{\left(2ab\right)^2+\left(2cd\right)^2}{2}\ge\dfrac{2\left(4abcd\right)}{2}=4abcd\)
đẳng thức khi a=b=c=d
Ta có BĐT \(a+b\ge2\sqrt{ab}\Leftrightarrow\left(a+b\right)^2\ge\left(2\sqrt{ab}\right)^2\)
\(\Leftrightarrow a^2+2ab+b^2\ge4ab\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\forall a,b\)
Đẳng thức xảy ra khi \(\left(a-b\right)^2=0\Rightarrow a=b\)
Vậy ta có: \(a^4+b^4\ge2\sqrt{a^4b^4}=2a^2b^2\)
\(c^4+d^4\ge2\sqrt{c^4d^4}=2c^2d^2\)
Cộng theo vế 2 BĐT trên ta có:
\(a^4+b^4+c^4+d^4\ge2a^2b^2+2c^2d^2=2\left[\left(ab\right)^2+\left(cd\right)^2\right]\)
Lại có: \(\left(ab\right)^2+\left(cd\right)^2\ge2\sqrt{\left(ab\right)^2\left(cd\right)^2}=2abcd\)
\(\Rightarrow2\left[\left(ab\right)^2+\left(cd\right)^2\right]\ge2\cdot2abcd=4abcd\)
\(\Rightarrow VT=a^4+b^4+c^4+d^4\ge4abcd=VP\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}a^4=b^4\\c^4=d^4\\\left(ab\right)^2=\left(cd\right)^2\end{matrix}\right.\Rightarrow\)\(\left\{{}\begin{matrix}a=b\\c=d\\ab=cd\end{matrix}\right.\)\(\Rightarrow a=b=c=d\)