Cho S=abc +bca +cab CM S ko phải là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chiu roi
ban oi
tk nhe@@@@@@@@@@@@@
xin do
ai tk minh minh tk lai
S=abc+bca+cab
= (1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)
= 1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)
Vậy không tồn tại số chính phương S
S=abc+bca+cab=ax100+bx10+c+bx100+cx10+ax1+cx100+ax10+b=ax111+bx111+
Cx111=(a+b+c)x111
Vì số chính phương có dạng a^2 mà a+b+c có tổng nhiều nhất là 27 nên suy ra S không phải số chính phương(điều cần chứng minh)
\(S=\overline{abc}+\overline{bca}+\overline{cab}\)
\(S=100a+10b+c+100b+10c+a+100c+10a+b\)
\(S=111a+111b+111c\)
\(S=111\left(a+b+c\right)\)
\(S=37.3.\left(a+b+c\right)\)
Để \(S\) là số chính phương thì \(3\left(a+b+c\right)\) là một lũy thừa của \(37\) với số mũ lẻ
\(\Rightarrow\)\(3\left(a+b+c\right)⋮37\)\(\Rightarrow\)\(a+b+c⋮37\)
Mà \(3\le a+b+c\le27\) nên \(a+b+c⋮̸37\)
Vậy \(S\) không là số chính phương
Chúc bạn học tốt ~
\(S=\overline{abc}+\overline{bca}+\overline{cab}\)
\(=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)
\(=111a+111b+111c\)
\(=111\left(a+b+c\right)=37.3\left(a+b+c\right)\)
vì : \(0< a,b,c\le9;\left(a;b;c\in N\right)\)
\(\Rightarrow a+b+c\le27\)
\(\Rightarrow a+b+c⋮̸37̸\)
mà \(\left(3,37\right)=1\)
\(\Rightarrow3\left(a+b+c\right)⋮̸37̸\)
do đó S không là số chính phương
S=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)
Vậy không tồn tại số chính phương S
S=abc+bca+cab=
(1000a+10b+c) +(1000b+10c+a)+(1000c+10a+b)=
1011*(a+b+c) =3*337*(a+b+c)
Do 3 & 337 là số nguyên tố, để S là số chính phương thì tổng a+b+c phải bằng 3*337 hoặc là (3*337)^(2n+1) (*)
Tuy nhiên do a,b,c<=9 => a+b+c<=27 nên không thể nào thỏa mãn (*)
Vậy không tồn tại số chính phương S
tích nha
abc+bca+cab=100a+10b+c+100b+10c+a+100c+10a+b=111a+111b+111c=111(a+b+c)
để 111(a+b+c)là số chính phương <=>a+b+c=111^2n+1 (n là số tự nhiên) =>a+b+c>hoặc =111 (1)
mà 0<a:b:c<hoặc =9 =>2<a+b+c<28 (2)
ta thấy (1) và (2) đối nghịch nhau nên a+b+c khác 111^2n+1 vậy abc+bca+cab ko phải là số chính phương (đpcm)
nhớ k cho mk nha bạn
ta có : abc + bca + cab = 111a + 111b + 111c
= 111 . (a+b+c)
= 3. 37 . (a+b+c)
Để S là số chính phương thì a+b+c = 3. 37 . k^2.
Mà a+ b+ c < hoặc = 27 nên :
Vay tog S ko phai la so chih phuong
Bạn có thể vào http://olm.vn/hoi-dap/question/96113.html