K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

Ta có : | 4x - 5 | > hoặc = 0

| 5x + 7,5 | > hoặc = 0

=> | 4x - 5 | + |5x + 7,5 | > hoặc = 0

=> | 4x - 5 | + | 5x + 7,5 | + 7,5 > hoặc = 7,5

Dấu '' = '' xảy ra khi A = 7,5

Vậy giá trị nhỏ nhất của A là 7,5

13 tháng 4 2017

Khi A=7,5 thì x=?

21 tháng 9 2021

\(a,A=\left|3,4-x\right|+1,7\ge1,7\)

Dấu \("="\Leftrightarrow3,4-x=0\Leftrightarrow x=3,4\)

\(c,C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}4x-3=0\\5y+7,5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=-\dfrac{3}{2}\end{matrix}\right.\)

26 tháng 7 2017

Vì \(\hept{\begin{cases}\left(4x-3\right)^2\ge0\\\left|5y+7,5\right|\ge0\end{cases}\Rightarrow}\left(4x-3\right)^2+\left|5y+7,5\right|\ge0\)

\(\Rightarrow\left(4x-3\right)^2+\left|5y+7,5\right|+17,5\ge17,5\)

Dấu "=" xảy ra khi \(\left(4x-3\right)^2=\left|5y+7,5\right|=0\) 

  • (4x-3)2=0 <=> 4x-3=0 <=> 4x=3 <=> x=3/4
  • |5y+7,5|=0 <=> 5y+7,5=0 <=> 5y=-7,5 <=> y=-3/2

Vậy ......

26 tháng 7 2017

sorry, i cant do it

16 tháng 7 2018

k) Vì \(\left|4x-3\right|\ge0\left(\forall x\right);\left|5y+7,5\right|\ge0\left(\forall y\right)\)

\(\Rightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}}\)

Vậy CMin = 17,5 khi và chỉ khi x = 3/4 và y = -3/2

n) Ta có: 

\(M=\left|x-2002\right|+\left|x-2001\right|=\left|x-2002\right|+\left|2001-x\right|\ge\left|x-2002+2001-x\right|=1\)

Dấu "=" xảy ra khi \(\left(x-2002\right)\left(2001-x\right)\ge0\) 

<=> x lớn hơn hoặc bằng 2002

Hoặc x bé hơn hoặc bằng 2001

Vậy MMin =1

26 tháng 12 2017

\(C=\left|4x-3\right|+\left|5y+7,5\right|+17.5\)

Ta có :

\(\left\{{}\begin{matrix}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{matrix}\right.\\ \Rightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17.5\)

Dấu "=" xảy ra khi x=3/4 ; y=-1,5

Min C= 17,5 khi x=3/4 ; y=-1,5

27 tháng 10 2019

FgđNdkkgg

\(A=|4x-3|+|5y+7,5|+17,5\)

\(|4x-3|\ge0\)

\(|5y+7,5|\ge0\)

\(\Leftrightarrow|4x-3|+|5y+7,5|+17,5\ge17,5\)

Vậy \(MaxA=17,5\)khi \(\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)

5 tháng 2 2021

undefined

5 tháng 2 2021

Giups mik vs

lolang

20 tháng 8 2020

Phải tìm bạn ạ. Mk thi hsg vẫn bắt buộc đó

20 tháng 8 2020

thanks

hihi

19 tháng 7 2017

help me !!!hahahahahahahahahaha

19 tháng 7 2017

\(\)bài nào có MIN or MAX thì mk làm,mk ko làm thì có nghĩa là ko có nha

\(D=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)

\(\left\{{}\begin{matrix}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{matrix}\right.\)

\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|\ge0\)

\(\Rightarrow\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|4x-3\right|=0\Rightarrow4x=3\Rightarrow x=\dfrac{3}{4}\\\left|5y+7,5\right|=0\Rightarrow5y=-7,5\Rightarrow y=-1,5\end{matrix}\right.\)

\(\Rightarrow MIN_D=17,5\) khi \(x=\dfrac{3}{4};y=-1,5\)

\(E=4-\left|5x-2\right|-\left|3y+12\right|\)

\(\left\{{}\begin{matrix}\left|5x-2\right|\ge0\\\left|3y+12\right|\ge0\end{matrix}\right.\)

\(\Rightarrow E=4-\left|5x-2\right|-\left|3y+12\right|\le4\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left|5x-2\right|=0\Rightarrow5x=2\Rightarrow x=\dfrac{2}{5}\\\left|3y+12\right|=0\Rightarrow3y=-12\Rightarrow y=-4\end{matrix}\right.\)

\(\Rightarrow MAX_E=4\) khi \(x=\dfrac{2}{5};y=-4\)

NV
1 tháng 11 2021

\(B=\dfrac{\left(x-2\right)\left(x-3\right)\left(x-1\right)\left(x-4\right)}{\left(x-4\right)\left(x-3\right)}=\left(x-2\right)\left(x-1\right)\)

\(B=x^2-3x+2=\left(x-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

\(B_{min}=-\dfrac{1}{4}\) khi \(x=\dfrac{3}{2}\)

1 tháng 11 2021

\(B=\dfrac{\left(x-3\right)\left(x-2\right)\left(x-4\right)\left(x-1\right)}{\left(x-4\right)\left(x-3\right)}=\left(x-2\right)\left(x-1\right)=x^2-3x+2=\left(x-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

với mọi x.

\(B_{min}=-\dfrac{1}{4}\) tại \(x=\dfrac{3}{2}\)