K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

\(\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right)\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)

\(=\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right)\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{8^2}\right)...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)

\(=\left(\dfrac{1}{64}-\dfrac{1}{3^2}\right)\left(\dfrac{1}{64}-\dfrac{1}{4^2}\right)...0...\left(\dfrac{1}{64}-\dfrac{1}{64^2}\right)\)

\(=0\)

Vậy...

11 tháng 4 2017

eoeo

1 tháng 10 2023

\(\left(3-x\right)^3=-\dfrac{27}{64}\)

\(\left(3-x\right)^3=\left(\dfrac{-3}{4}\right)^3\)

\(=>3-x=\dfrac{-3}{4}\)

\(x=3-\dfrac{-3}{4}=\dfrac{12}{4}+\dfrac{3}{4}\)

\(x=\dfrac{15}{4}\)

________

\(\left(x-5\right)^3=\dfrac{1}{-27}\)

\(\left(x-5\right)^3=\left(\dfrac{-1}{3}\right)^3\)

\(=>x-5=\dfrac{-1}{3}\)

\(x=\dfrac{-1}{3}+5=\dfrac{-1}{3}+\dfrac{15}{3}\)

\(x=\dfrac{14}{3}\)

_____________

\(\left(x-\dfrac{1}{2}\right)^3=\dfrac{27}{8}\)

\(\left(x-\dfrac{1}{2}\right)^3=\left(\dfrac{3}{2}\right)^3\)

\(=>x-\dfrac{1}{2}=\dfrac{3}{2}\)

\(x=\dfrac{3}{2}+\dfrac{1}{2}\)

\(x=2\)

________

\(\left(2x-1\right)^2=\dfrac{1}{4}\)            

\(\left(2x-1\right)^2=\left(\dfrac{1}{2}\right)^2\)           hoặc              \(\left(2x-1\right)^2=\left(\dfrac{-1}{2}\right)^2\)

\(=>2x-1=\dfrac{1}{2}\)                                       \(2x-1=\dfrac{-1}{2}\)

\(2x=\dfrac{1}{2}+1=\dfrac{1}{2}+\dfrac{2}{2}\)                               \(2x=\dfrac{-1}{2}+1=\dfrac{-1}{2}+\dfrac{2}{2}\)

\(2x=\dfrac{3}{2}\)                                                     \(2x=\dfrac{1}{2}\)

\(x=\dfrac{3}{2}:2=\dfrac{3}{2}.\dfrac{1}{2}\)                                     \(x=\dfrac{1}{2}:2=\dfrac{1}{2}.\dfrac{1}{2}\)

\(x=\dfrac{3}{4}\)                                                       \(x=\dfrac{1}{4}\)

____________

\(\left(2-3x\right)^2=\dfrac{9}{4}\)

\(\left(2-3x\right)^2=\left(\dfrac{3}{2}\right)^2\)                hoặc                  \(\left(2-3x\right)^2=\left(\dfrac{-3}{2}\right)^2\)

\(=>2-3x=\dfrac{3}{2}\)                                               \(2-3x=\dfrac{-3}{2}\)

\(3x=2-\dfrac{3}{2}=\dfrac{4}{2}-\dfrac{3}{2}\)                                      \(3x=2-\dfrac{-3}{2}=\dfrac{4}{2}+\dfrac{3}{2}\)

\(3x=\dfrac{1}{2}\)                                                            \(3x=\dfrac{7}{2}\)

\(x=\dfrac{1}{2}.\dfrac{1}{3}\)                                                          \(x=\dfrac{7}{2}.\dfrac{1}{3}\)

\(x=\dfrac{1}{6}\)                                                               \(x=\dfrac{7}{6}\)

______________

\(\left(1-\dfrac{2}{3}\right)^2=\dfrac{4}{9}\) -> Kiểm tra đề câu này

1 tháng 10 2023

(3-x)3=(-\(\dfrac{3}{4}\))3

3-x=-\(\dfrac{3}{4}\)

  x=3-(-\(\dfrac{3}{4}\))

  x=\(\dfrac{15}{4}\)

20 tháng 12 2021

e: \(=\dfrac{5^{30}\cdot3^{20}}{3^{15}\cdot5^{30}}=3^5=243\)

a) Ta có: \(\left(\dfrac{9}{25}-2\cdot18\right):\left(3\dfrac{4}{5}+0.2\right)\)

\(=\left(\dfrac{9}{25}-36\right):\left(\dfrac{19}{5}+\dfrac{1}{5}\right)\)

\(=\left(\dfrac{9}{25}-\dfrac{900}{25}\right):\dfrac{20}{5}\)

\(=\dfrac{-891}{25}\cdot\dfrac{1}{4}\)

\(=-\dfrac{891}{100}\)

b) Ta có: \(\dfrac{3}{8}\cdot19\dfrac{1}{3}+\dfrac{3}{8}\cdot33\dfrac{1}{3}\)

\(=\dfrac{3}{8}\cdot\dfrac{58}{3}+\dfrac{3}{8}\cdot\dfrac{100}{3}\)

\(=\dfrac{58}{8}+\dfrac{100}{8}\)

\(=\dfrac{158}{8}=\dfrac{79}{4}\)

c) Ta có: \(15\cdot\left(-\dfrac{2}{3}\right)^2-\dfrac{7}{3}\)

\(=15\cdot\dfrac{4}{9}-\dfrac{7}{3}\)

\(=\dfrac{20}{3}-\dfrac{7}{3}\)

\(=\dfrac{13}{3}\)

d) Ta có: \(\dfrac{1}{2}\sqrt{64}-\sqrt{\dfrac{4}{25}}+\left(-1\right)^{2007}\)

\(=\dfrac{1}{2}\cdot8-\dfrac{2}{5}-1\)

\(=4-1-\dfrac{2}{5}\)

\(=3-\dfrac{2}{5}\)

\(=\dfrac{15}{5}-\dfrac{2}{5}=\dfrac{13}{5}\)

e) Ta có: \(\left(-\dfrac{5}{2}\right)^2:\left(-15\right)-\left(0.45+\dfrac{3}{4}\right)\cdot\left(-1\dfrac{5}{9}\right)\)

\(=\dfrac{25}{4}\cdot\dfrac{-1}{15}-\left(\dfrac{9}{20}+\dfrac{15}{20}\right)\cdot\dfrac{-14}{9}\)

\(=\dfrac{-25}{60}-\dfrac{24}{20}\cdot\dfrac{-14}{9}\)

\(=\dfrac{-25}{60}+\dfrac{28}{15}\)

\(=\dfrac{-25}{60}+\dfrac{112}{60}\)

\(=\dfrac{87}{60}=\dfrac{29}{20}\)

f) Ta có: \(\left(-\dfrac{1}{3}\right)-\left(-\dfrac{3}{5}\right)^0+\left(1-\dfrac{1}{2}\right)^2:2\)

\(=-\dfrac{1}{3}-1+\left(\dfrac{1}{2}\right)^2\cdot\dfrac{1}{2}\)

\(=\dfrac{-4}{3}+\dfrac{1}{4}\cdot\dfrac{1}{2}\)

\(=\dfrac{-4}{3}+\dfrac{1}{8}\)

\(=\dfrac{-32}{24}+\dfrac{3}{24}=\dfrac{-29}{24}\)

g) Ta có: \(\left(\dfrac{1}{2}\right)^{15}\cdot\left(\dfrac{1}{4}\right)^{20}\)

\(=\left(\dfrac{1}{2}\right)^{15}\cdot\left(\dfrac{1}{2}\right)^{40}\)

\(=\left(\dfrac{1}{2}\right)^{55}\)

\(=\dfrac{1}{2^{55}}\)

h) Ta có: \(\dfrac{5^4\cdot20}{25^5\cdot4^5}\)

\(=\dfrac{5^4\cdot5\cdot2^2}{5^{10}\cdot2^{10}}\)

\(=\dfrac{5^5}{5^{10}}\cdot\dfrac{2^2}{2^{10}}\)

\(=\dfrac{1}{5^5}\cdot\dfrac{1}{2^8}\)

\(=\dfrac{1}{800000}\)

26 tháng 12 2023

a) \(4.\left(-\dfrac{1}{2}\right)^3-2.\left(-\dfrac{1}{2}\right)^2+3.\left(-\dfrac{1}{2}\right)+1\)

\(=4.\left(-\dfrac{1}{8}\right)-2.\dfrac{1}{4}+3.\left(-\dfrac{1}{2}\right)+1\)

\(=-\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{3}{2}+1\)

\(=-\dfrac{3}{2}\)

b) \(8.\sqrt{9}-\sqrt{64}\)

\(=8.3-8\)

\(=24-8\)

\(=16\)

c) \(\sqrt{\dfrac{9}{16}}+\dfrac{25}{46}:\dfrac{5}{23}-\dfrac{7}{4}\)

\(=\dfrac{3}{4}+\dfrac{5}{2}-\dfrac{7}{4}\)

\(=-1+\dfrac{5}{2}\)

\(=\dfrac{3}{2}\)

 

26 tháng 12 2023

56:54=

 

a: \(A=3^{\dfrac{2}{5}}\cdot3^{\dfrac{1}{5}}\cdot3^{\dfrac{1}{5}}=3^{\dfrac{2}{5}+\dfrac{1}{5}+\dfrac{1}{5}}=3^{\dfrac{4}{5}}\)

b: \(B=\left(-27\right)^{\dfrac{1}{3}}=\left[\left(-3\right)^3\right]^{\dfrac{1}{3}}=\left(-3\right)^{\dfrac{1}{3}\cdot3}=\left(-3\right)^1=-3\)

c: \(C=\sqrt[3]{-64}\cdot\left(\dfrac{1}{2}\right)^3\)

\(=\sqrt[3]{\left(-4\right)^3}\cdot\dfrac{1}{2^3}=-4\cdot\dfrac{1}{8}=-\dfrac{4}{8}=-\dfrac{1}{2}\)

d: \(D=\left(-27\right)^{\dfrac{1}{3}}\cdot\left(\dfrac{1}{3}\right)^4\)

\(=\left[\left(-3\right)^3\right]^{\dfrac{1}{3}}\cdot\dfrac{1}{3^4}\)

\(=\left(-3\right)^{3\cdot\dfrac{1}{3}}\cdot\dfrac{1}{81}=\dfrac{-3}{81}=\dfrac{-1}{27}\)

e: \(E=\left(\sqrt{3}+1\right)^{106}\cdot\left(\sqrt{3}-1\right)^{106}\)

\(=\left[\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\right]^{106}\)

\(=\left(3-1\right)^{106}=2^{106}\)

f: \(F=360^{\sqrt{5}+1}\cdot20^{3-\sqrt{5}}\cdot18^{3-\sqrt{5}}\)

\(=360^{\sqrt{5}+1}\cdot\left(20\cdot18\right)^{3-\sqrt{5}}\)

\(=360^{\sqrt{5}+1}\cdot360^{3-\sqrt{5}}=360^{\sqrt{5}+1+3-\sqrt{5}}=360^4\)

g: \(G=2023^{3+2\sqrt{2}}\cdot2023^{2\sqrt{2}-3}\)

\(=2023^{3+2\sqrt{2}+2\sqrt{2}-3}\)

\(=2023^{4\sqrt{2}}\)

10 tháng 8 2021

ai giúp mìn vứi ❤

3 tháng 7 2018

bấm trên máy tính í là xong ngay í mà

5 tháng 7 2018

tính hợp lí bạn ay

tính a) \(\left[\dfrac{0.8\div\left(\dfrac{4}{5}\cdot1025\right)}{0.64-1}+\dfrac{\left(1.08-\dfrac{2}{25}\right)\div\dfrac{4}{7}}{\left(6\dfrac{5}{7}-3\dfrac{1}{4}\right)\cdot2\dfrac{2}{17}}+\left(1.2\cdot0.5\right)\div\dfrac{4}{5}\right]\) b) \(\left(0.2\right)^{-3}\left[\left(-\dfrac{1}{5}\right)^{-2}\right]^{-1}+\left[\left(\dfrac{1}{2}\right)^{-3}\right]^{-2}\div\left(2^{-3}\right)^{-1}-\left(0.175\right)^{-2}\) c) \(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\) d)...
Đọc tiếp

tính

a) \(\left[\dfrac{0.8\div\left(\dfrac{4}{5}\cdot1025\right)}{0.64-1}+\dfrac{\left(1.08-\dfrac{2}{25}\right)\div\dfrac{4}{7}}{\left(6\dfrac{5}{7}-3\dfrac{1}{4}\right)\cdot2\dfrac{2}{17}}+\left(1.2\cdot0.5\right)\div\dfrac{4}{5}\right]\)

b) \(\left(0.2\right)^{-3}\left[\left(-\dfrac{1}{5}\right)^{-2}\right]^{-1}+\left[\left(\dfrac{1}{2}\right)^{-3}\right]^{-2}\div\left(2^{-3}\right)^{-1}-\left(0.175\right)^{-2}\)

c) \(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)

d) \(\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{3}\)

e) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2\div2\)

f) \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)

g) \(\dfrac{1}{-\left(2017\right)\left(-2015\right)}+\dfrac{1}{\left(-2015\right)\left(-2013\right)}+...+\dfrac{1}{\left(-3\right)\cdot\left(-1\right)}\)

h) \(\left(1-\dfrac{1}{1\cdot2}\right)+\left(1-\dfrac{1}{2\cdot3}+...+\left(1-\dfrac{1}{2017\cdot2018}\right)\right)\)

3
7 tháng 10 2017

c)

Ta có :\(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)

\(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{\dfrac{3}{2}}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{2}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{1}{\dfrac{8}{3}}}\) \(=2+\dfrac{1}{1+\dfrac{3}{8}}\) \(=2+\dfrac{1}{\dfrac{11}{8}}\) \(=2+\dfrac{8}{11}\) \(=\dfrac{30}{11}\)

7 tháng 10 2017

d) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2:2\)

\(=3-1+\left(\dfrac{1}{2}\right)^2:2\)

\(=3-1+\dfrac{1}{4}:2\)

\(=3-1+\dfrac{1}{8}\)

\(=\dfrac{17}{8}\)

\(=-\dfrac{24}{5}\cdot\dfrac{-10}{64}+\left(\dfrac{4}{5}-\dfrac{19}{15}\right):\dfrac{10}{3}\)

\(=\dfrac{3}{4}-\dfrac{7}{15}\cdot\dfrac{3}{10}=\dfrac{3}{4}-\dfrac{7}{50}=\dfrac{61}{100}\)

10 tháng 4 2022

Thanks