Cho hình bình hành ABCD , trên tia đối của tia DA lấy DM = AB, trên tia đối của tia BA lấy BN = AD. Chứng minh:
a) Tam giác CBN đồng dạng với tam giác CDM cân.
b) Tam giác CBN đồng dạng với tam giác MDC.
c) 3 điểm M, C, N thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BN=AD
BC=AD
=>BN=BC
=>ΔBNC cân tại B
DC=AB
DM=AB
=>DC=DM
=>ΔDCM cân tại D
a)Vì ABCD là hình bình hành nên ta có 2 góc bằng nhau: ABC=ADC, hai cặp cạnh đối bằng nhau: AB=CD; AD=BC
Suy ra BN=AD=BC ; DM=AB=CD \(\Rightarrow\)CBN và CDM là hai tam giác cân
CDM=CBN (cùng bù với hai góc bằng nhau)(1)
Ta có: BN=AD=BC ; DM=AB=DC
suy ra \(\frac{BN}{DM}=\frac{BC}{DC}\)(2)
Từ (1) và (2) ,ta có: \(\Delta CBN\)đồng dạng với \(\Delta CDM\)
b)Từ phần a, ta có: góc DMC=DCM=BCN=BNC
Vì BA song song với DC nên CBN=BCD(so le ngoài)
Ta có:(góc) MCN=DCM+BCD+BCN=BNC+CBN+BCN=180 độ (tổng 3 góc trong 1 tam giác)
Vậy M,C,N thẳng hàng
a) tập trung vào phần được đánh dấu
b)
c)