Rút gọn các biểu thức:
a) \(90.10^k-10^{k+2}+10^{k+1}\)
b) \(2,5.5^{n-3}.10+5^n-6.5^{n-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(d,2,5.5^{n-3}.2.5+5^n-6.5^{n-1}=5.5.5^{n-3}+5^n-6.5^{n-1}=5^2.5^{n-3}+5^n-6.5^{n-1}\)
\(=5^{n-3+2}+5^n-6.5^{n-1}=5^{n-1}\left(1+5-6\right)=5^{n-1}.0=0\)
a, \(10^{n+1}-6.10^n=10^n\left(10-6\right)=4.10^n\)
b. \(2^{n+3}+2^{n+2}-2^{n+1}+2^n=2^n\left(2^3+2^2-2+1\right)=2^n\left(8+4-2+1\right)=11.2^n\)
a: \(10^{n+1}=10^n\cdot10\)
b: \(2^{n+3}+2^{n+1}-2^{n+1}+2^n\)
\(=2^n\cdot8+2^n=9\cdot2^n\)
c: \(90\cdot10^k-10^{k+2}+10^{k+1}\)
\(=90\cdot10^k+10^k\cdot10-10^k\cdot100=0\)
b) \(x^2\left(x^2+4\right)-x^2-4=0\)
.\(\Leftrightarrow x\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+4\right)=0\)
\(\Rightarrow x-1=0\)(vì \(x^2+4>0\))
\(\Leftrightarrow x=1\)
Ta có : (2x - 1)2 - (4x2 - 1) = 0
<=> (2x - 1)2 - [(2x)2 - 12] = 0
<=> (2x - 1)2 - (2x - 1)(2x + 1) = 0
<=> (2x - 1)[2x - 1 - (2x + 1)] = 0
<=> (2x - 1)(-2) = 0
=> 2x - 1 = 0
=> 2x = 1
=> x = \(\frac{1}{2}\)
Vậy x = \(\frac{1}{2}\)
a) 10n + 1 - 6.10n
= 10n . 10 - 6 . 10n
= 10n . (10 - 6)
= 10n . 4
b) 2n + 3 + 2n + 2 - 2n + 1 + 2n
= 2n . 23 + 2n . 22 - 2n . 2 + 2n . 1
= 2n . (8 + 4 - 2 + 1)
= 2n . 11
1a) \(10^{n+1}-6\cdot10^n\)
\(=10^n\cdot10-6\cdot10^n\)
= \(10^n\left(10-6\right)\)
\(=10^n\cdot4\)
b) \(2^{n+3}+2^{n+2}-2^{n+1}+2^n\)
\(=2^n\cdot2^3+2^n\cdot2^2-2^n\cdot2+2^n\)
\(=2^n\left(2^3+2^2-2+1\right)\)
\(=2^n\cdot11\)
c) \(90\cdot10^k-10^{k+2}+10^{k+1}\)
\(=90\cdot10^k-10^k\cdot10^2+10^k\cdot10\)
\(=10^k\left(90-10^2+10\right)=0\)
d) \(2,5\cdot5^{n-3}\cdot10+5^n-6\cdot5^{n-1}\)
\(=\dfrac{2,5\cdot10\cdot5^n}{5^3}+5^n-\dfrac{6\cdot5^n}{5}\)
\(=\dfrac{5^n}{5}+5^n-\dfrac{6\cdot5^n}{5}\)
\(=\dfrac{5^n+5^n\cdot5-6\cdot5^n}{5}=\dfrac{5^n\left(5-6\right)+5^n}{5}=0\)
2. \(M+\left(6x^2-4xy\right)=7x^2-8xy+y^2\)
\(M=\left(7x^2-8xy+y^2\right)-\left(6x^2-4xy\right)\)
\(M=7x^2-8xy+y^2-6x^2+4xy\)
\(M=7x^2-6x^2-8xy+4xy+y^2\)
\(M=x^2-4xy+y^2\)
Rút gọn:
a, \(10^{n+1}+6.10^n\)
b, \(90.10^n-10^{n+2}+10^{n+1}\)
c, \(2,5.5^{n-1}.10+5^n-6.5^{n-1}\)
a/ \(10^{n+1}+6.10^n=10^n.10+6.10^n=10^n\left(10+6\right)=10^n.16\)
b/ \(90.10^n-10^{n+2}+10^{n+1}=90.10^n-10^n.10^2+10^n.10=10^n\left(90-100+10\right)=0\)
c/ \(2,5.5^{n-1}.10+5^n-6.5^{n-1}=2,5.5^n.\dfrac{1}{5}+5^n-6.5^n.\dfrac{1}{5}=5^n\left(\dfrac{1}{2}+1+\dfrac{6}{5}\right)=5^n.\dfrac{3}{2}\)
a) Ta có:
\(90.10^k-10^{k+2}+10^{k+1}\)
\(=90.10^k-10^k.10^2+10^k.10\)
\(=10^k\left(90-10^2+10\right)\)
\(=10^k.0=0\)
b) Ta có:
\(2,5.5^{n-3}.10+5^n-6.5^{n-1}\)
\(=2,5.10.5^{n-3}+5^n-6.5^{n-1}\)
\(=5.5.5^{n-3}+5^n-6.5^{n-1}\)
\(=5^2.5^{n-3}+5^n-6.5^{n-1}\)
\(=5^{n-3+2}+5^n-6.5^{n-1}\)
\(=5^{n-1}\left(1+5-6\right)\)
\(=5^{n-1}.0=0\)
a) Rút gọn biểu thức:
\(90\times10^k-10^{k+2}+10^{k+1}=90\times10^k-10^k\times10^2+10^k\times10\) \(=10^k\times\left(90-10^2+10\right)\) \(=10^k\times\left(90-100+10\right)\) \(=10^k\times0=0\)
b) Rút gọn biểu thức:
\(2,5\times5^{n-3}\times10+5^n-6\times5^{n-1}=2,5\times\dfrac{5^n}{5^3}\times10+5^n-6\times\dfrac{5^n}{5}\) \(=2,5\times\dfrac{5^n}{125}\times10+5^n-\dfrac{6}{5}\times5^n\) \(=0,2\times5^n+5^n-1,2\times5^n\) \(=5^n\times\left(0,2+1-1,2\right)=5^n\times0=0\)